
A five-member team led by postdoctoral researcher Daniel “Dani” Paredes of the Daniel Karp lab, UC Davis Department of Wildlife, Fish and Conservation Biology (WFCB), analyzed a 13-year government database to assess how the landscapes surrounding 400 Spanish vineyards influenced European grapevine moth (Lobesia botrana) outbreaks and insecticides application rates.
The article, "Landscape Simplification Increases Vineyard Pest Outbreaks and Insecticide Use," is now online.
“At harvest, we found pest outbreaks increased four-fold in simplified, vineyard-dominated landscapes compared to complex landscapes in which vineyards are surrounded by semi-natural habitats,” said lead author Paredes, who holds a doctorate in environmental sciences (2014) from the University of Granada, Spain. “Overall, our results suggest that simplified landscapes increase vineyard pest outbreaks and escalate insecticide spray frequencies. In contrast, vineyards surrounded by more productive habitats and more shrubland area are less likely to apply insecticides.”
Landscapes around farms are rarely managed to suppress damaging crop pests, partially because researchers rarely measure the key variables that drive farming decisions. This paper, however “shows how using really huge datasets—in this case generated by government employees working with farmers in Spain--can reveal how natural habitats surrounding agriculture can shape pest outbreaks and pesticide use in vineyards,” said co-author Jay Rosenheim, distinguished professor in the UC Davis Department of Entomology and Nematology.


A solution? At an individual level, farmers may better control L. botrana populations through planting native vegetation in and around their farm. Ideally, they would coordinate with each other to maintain and/or restore large patches of productive, shrubland habitats in the surrounding landscape.
Other co-authors are Rebecca Chaplin-Kramer, Natural Capital Project, Stanford University; and Silvia Winter, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Austria.
Their work was financed by the research project SECBIVIT, or “scenarios for providing multiple ecosystem services and biodiversity in viticultural landscapes,” and a National Science Foundation/USA grant.