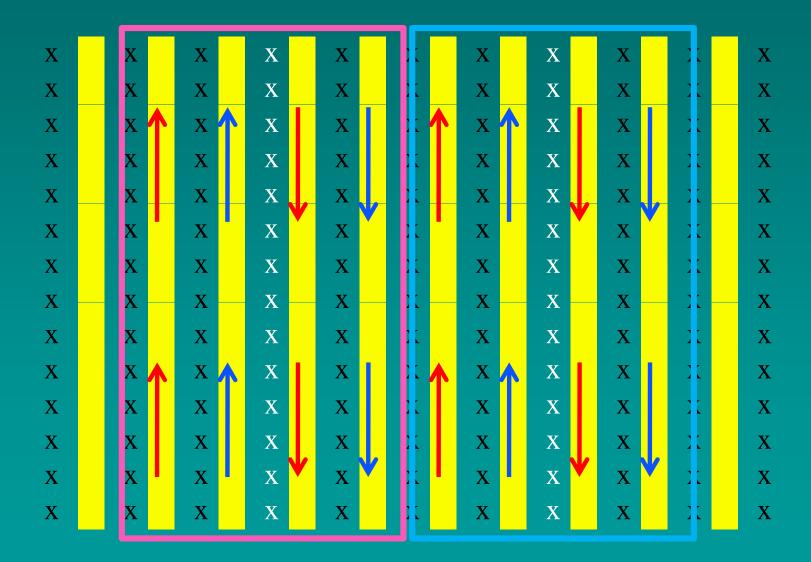
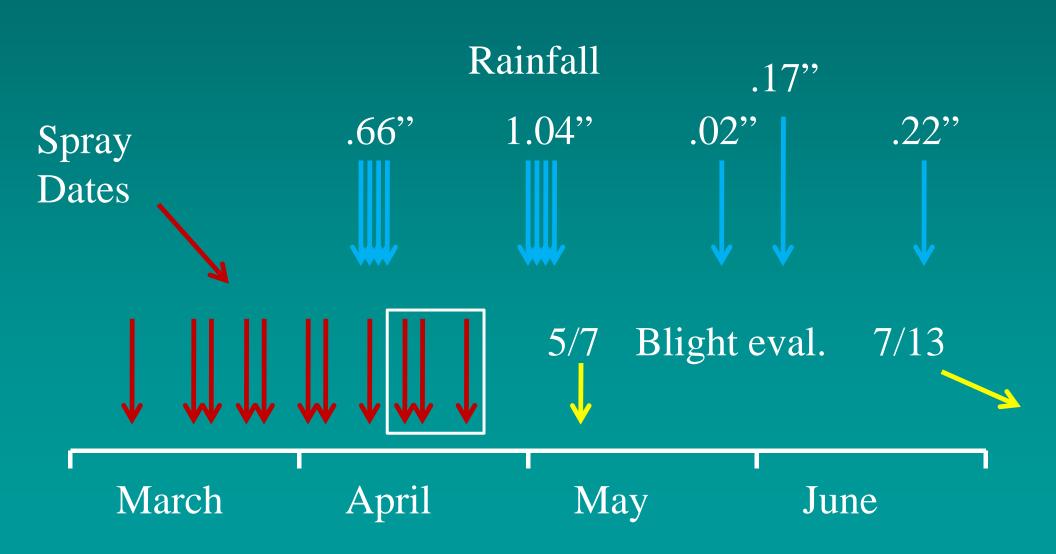
Use of Kocide 3000 and a Tower Sprayer in a Fire Blight Management Program

Chuck Ingels UC Cooperative Extension, Sacramento County **Cooperators:** Jim Adaskaveg, UC Riverside Franz Niederholzer, UCCE Sutter/Yuba Counties Thom Wiseman, Lyman Group, Inc. Ria DeBiase, field assistant

Funding: Calif. Pear Advisory Board


Background

- C Streptomycin resistance widespread in Calif.
- Most copper formulations cause russetting
- C Kocide 3000 has reduced MCE (30%), "more bio-active copper"
- C Dithane, Manzate Pro Stick reduce blight, reduces russetting (?)
- Many growers now use Kocide 3000 (0.5 lb./A)
 + Manzate Pro Stick (3 lbs./A) season-long
- Copper resistance potential


Trial Protocol

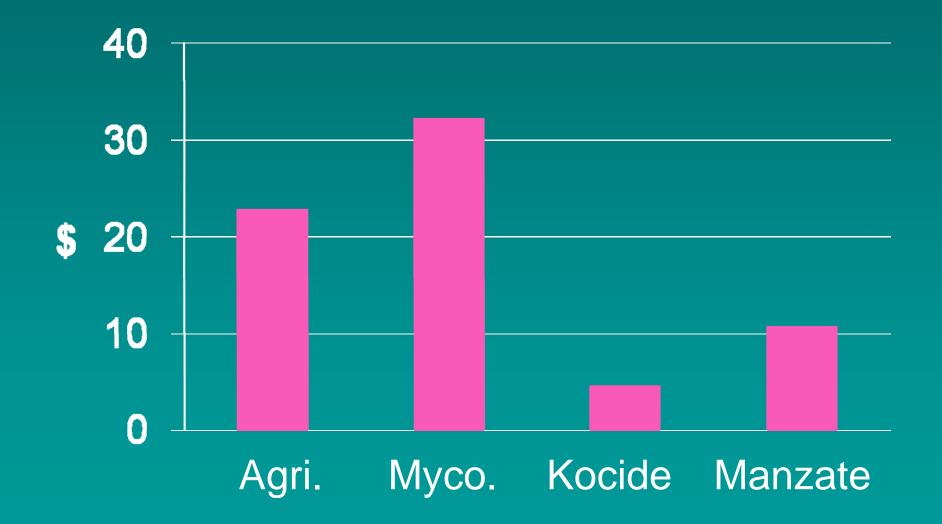
- CRCB, 4 reps, alt. row spraying
- C Treatments:
- 1. Mycoshield (1.0 lb./acre), season-long
- Kocide 3000 (0.5 lb./acre) + Manzate Pro Stick (3 lbs./acre), season-long
- Kocide 3000 + Manzate Pro Stick up to April 8, Mycoshield April 14 through April 21
- 4. (15 untreated trees nearby point rows)

Layout of Two Plots Alt. Row Spraying, Data from Center Row

Season Timeline

Mean No. of Blight Strikes/Tree

Treatment	May 7	July 13
Mycoshield	0.11 a	1.52 b
Kocide + MPS	0.27 a	0.62 c
Kocide + MPS, then Myco	0.21 a	1.73 a


P = 0.05, Tukey's HSD (May 7 sig. diff. at P = 0.06)

Percent Russetting

Treatment	May 7
Mycoshield	1.06 a
Kocide + MPS	1.09 a
Kocide + MPS, then Myco	0.69 a

P = 0.05, Tukey's HSD

<u>Cost Comparison</u> Amount per Full Application

Standard vs. Tower Sprayer

Tower vs. Standard Sprayer

- Standard sprayers: Unequal distribution of pesticide in tree canopy – more in lower portion of tree
- C Tower best for high-density orchards
- Most Calif. orchards branches in the way
- Increased efficiency, reduced drift, improved coverage, reduced gallonage and a.i.

Two Tower Sprayers

LectroBlast Electrostatic Sprayer

Blueline Accutech Sprayer

Turbo-Mist Tower Sprayer (Slimline Mfg., Canada)

Orchard and Sprayers Used

Orchard 16' x 10', canopy 10' to 11' wide
Tractor: FMC 352, Sprayers: PTO driven
Turbo-Mist tower sprayer – Slimline Mfg., (150 psi)

Axial fan sprayer –
 Air-O-Fan (175 psi)

Protocol

Sprayed water in two tests (May 5, May 18)
Sprayed down single row, spraying E & W
Std. sprayer 100 gpa, tower sprayer 80 gpa
Wind: May 5 – 0-5 mph, May 18 – 0-7 mph
2" x 3" water-sensitive cards at 5' & 10'
Std. sprayer □ dry □ new cards in identical location □ tower sprayer

Spray Card Setup May 5

X

X

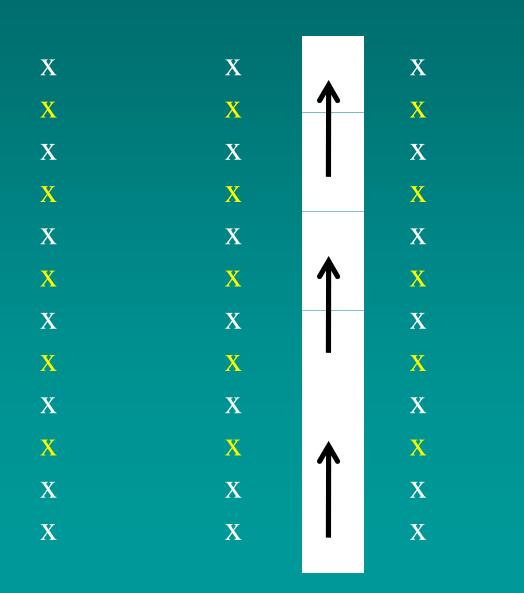
X

X

X

X

Χ


X

X

X

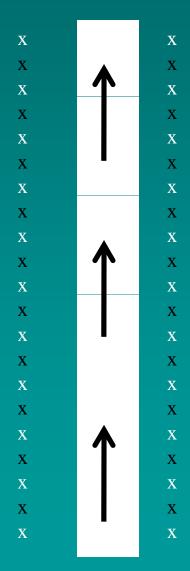
X

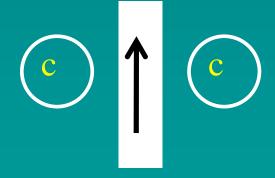
X

 Cards on clips at 5' & 10' on PVC poles

- Adjacent rows: beyond row ctr.
- C 2 rows over:

at canopy edge


Х


		Downw.	Downw. Row 1	Upw.	Upw.
Ht.	Туре	Row 2	Row 1	Row 1	Row 2
10 ft.	Std.	9.6 a	9.7 a	0.6 a	0.0 b
	Tower	7.5 a	12.8 a	4.2 a	9.4 a
5 ft.	Std.	1.2 a	28.1 b	2.7 a	0.1 b
	Tower	17.4 a	57.7 a	14.8 a	6.7 a

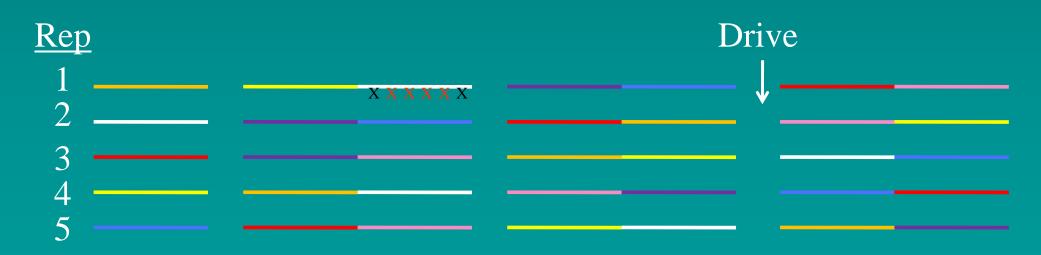
P = 0.05, Tukey's HSD

Spray Card Setup May 18

 Cards on clips at 5' & 10' on PVC poles
 Adjacent rows: in row centers

		East	West	
Ht.	Туре	Row	Row	
10 ft.	Std.	11.9 a	14.0 a	
	Tower	21.2 a	8.3 a	
5 ft.	Std.	67.3 a	32.3 b	
	Tower	72.2 a	65.1 a	

P = 0.05, Tukey's HSD


Finding Cost-Effective Weed and Nutrient Management Practices in Organic Pear Orchards

Chuck Ingels, UCCE Sacramento County Tom Lanini, UCD Plant Sciences Dept. Karen Klonsky, UCD Ag. & Resource Economics Ken Shackel, UCD Plant Sciences Dept. Grower Cooperator: Chris Frieders

Past Survey Results

Surveys of organic growers in WA & CA: Weed control, soil fertility are two of the top production challenges in organic tree fruit production Experimental Methods Trial Started Oct. 16, 2008

- Uniform Bosc block, 18' x 10' (242), planted 2001
- RCB design, 7 treatments, 5 reps
- Plot size: 6 trees/rep (sample middle 4 trees)
- All 7 treatments down each row

<u>Treatments</u> Applications Oct. 16-22, 2008

- 1. In-row mowing, no N fert.
- 2. In-row mowing, chicken (2 T/A [120 lbs. N])
- 3. In-row mowing, chicken (4 T/A [240 lbs. N])
- 4. In-row mowing, feather (0.5 T/A [120 lbs. N])
- 5. Landscape fabric + chicken (4 T/A)
- 6. Wood chips + chicken (4 T/A)
- 7. Herbicide strip + chicken (4 T/A)

In-Row Mower and Occasional Damage

Herbicide

<u>Vinegar</u>

- » 20% acetic acid (30% vinegar + water [2:1]) + org. surfactant (NuFilm P), 0.5% v/v
- GreenMatch (Marrone Bio Innovations, Davis)
 - » Lemongrass extract, 10% solution
- Spray volume 75 gal./treated acre
- Application dates:
 - » Oct. 22 (V), Nov. 5 (V), Nov. 19 (V), Feb. 10 (GM), and June 23 (V)

10/22/08

11/5/08

Herbicide

Fleischmann's Vinegar 209 Gene St., Nixa, MO 65714 417-725-3596 12/7/07 DATE: 300 grain STRENGTH: White Distilled Vinegar PRODUCT: Made in the U.S.A.

Vinegar Applied 10/22, 11/5

11/5/08

11/25/08

Wood Chips

5 ft. strip, 6 in. deep
226 yds./acre (nearly 1 yd./tree)

Wood Chips



Landscape Fabric

- 3 ft. wide per side, overlapped ~8 in. (~5 ft.)
- Pins placed every 2-3 ft.

Lasts 8-10 yrs.(?)

Landscape Fabric

Organic Fertilization Chicken Manure

Usually with wood shavings, rice hulls

- 3.2% N, 1.7% P, 2.7% K
- N: 120 lbs./A ÷ 0.03 = 2 T/A
- Smell, NH₄ volatilization are major issues

Chicken Manure

Organic Fertilization Feather Meal

- Often-used N source (avg. 12% N)
- Pelleted; slow release through season
- 11% N, 2% P, 0.5%K
- N: 120 lbs./A ÷ 0.12 = 0.5 T/A
- Little smell, little NH₃ volatilization

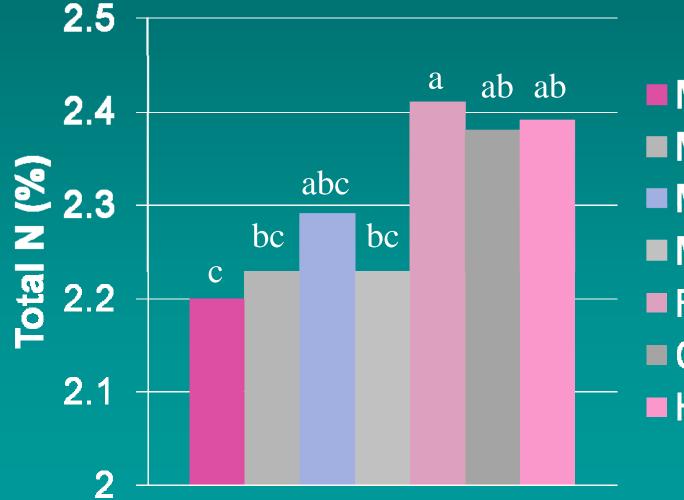
Feather Meal (Pelleted)

Feather Meal (Pelleted)

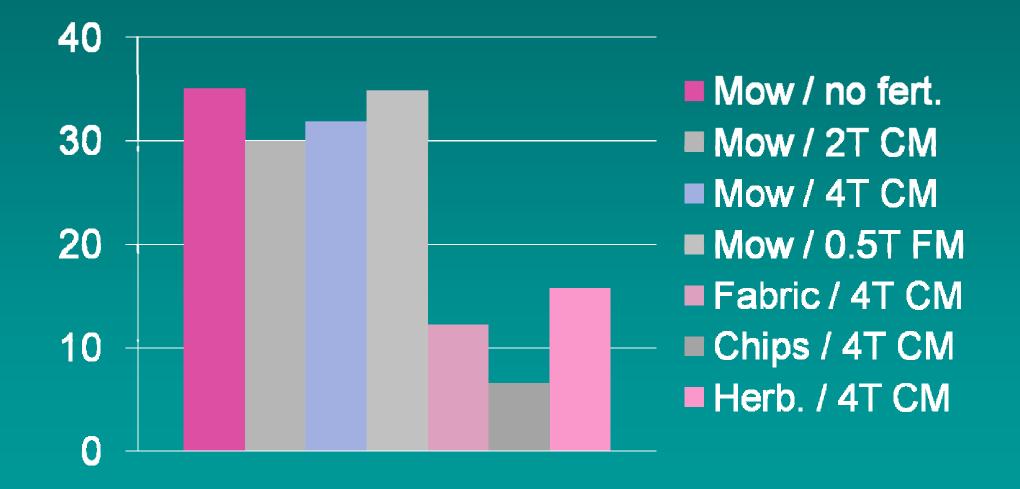
Before irrig.

<u>Results – Year 1</u> No Significant Differences for These

- Yield (29-30 T/A)
- Fruit diameters
- Trunk cross-sectional area (growth)
- Leaf P, K, Ca, Mg content
- Most soil nutrients (0-12", 12-24")

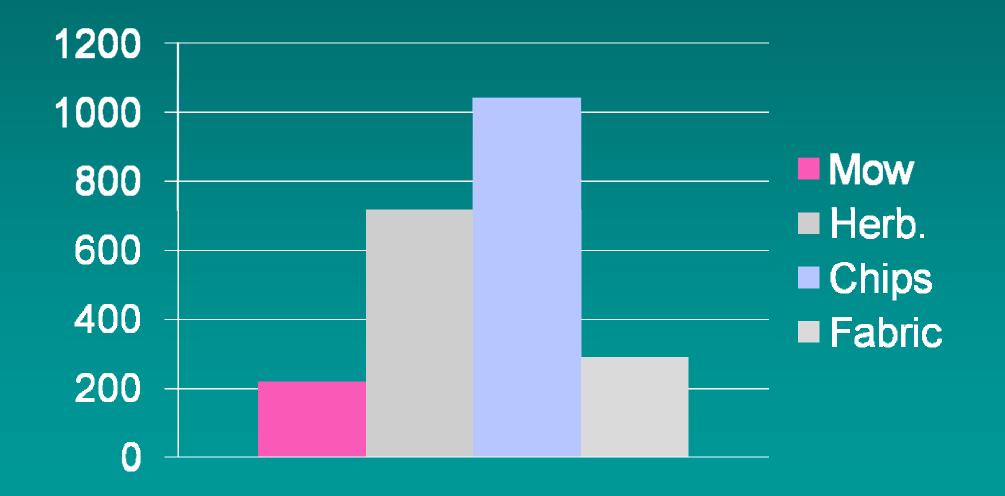

<u>% Control of Weeds</u> 5 Herb. Sprays (Oct. 2008 – June 2009)

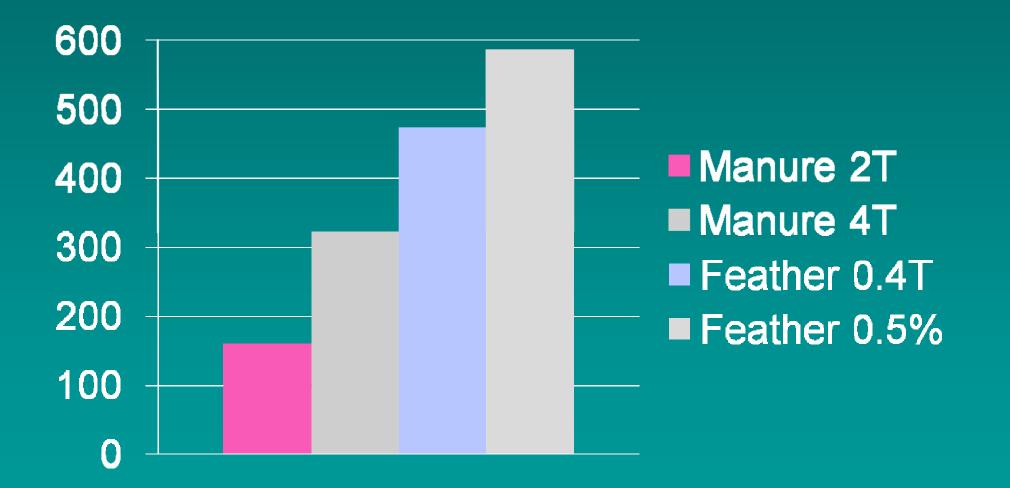
Stem Water Potential (Tree Water Stress)



Leaf Nitrogen Content

Mow / no fert.
Mow / 2T CM
Mow / 4T CM
Mow / 0.5T FM
Fabric / 4T CM
Chips / 4T CM
Herb. / 4T CM


<u>Vole Holes</u> No. per 6 Trees (1 Side Only)



- In-row mowing 5 times per yr. (2 passes)
- Herbicide (GreenMatch) applied 5 times (vinegar is much cheaper)
- Wood chips Year 1: 4", Year 2: 2"
- Fabric longevity: 8 yrs. (amortized)
- Chicken manure 2 vs. 4 T/A
- Feather meal 800 lbs./A

Economics – Weed Control Total Costs/Acre/Year

<u>Economics – Fertilization</u> Total Costs/Acre/Year

Conclusions

- Wood chip cost prohibitive; weeds invade
- Fabric mulch may improve fruit size, may not affect tree moisture status, and may be costeffective (if it lasts)
- Current organic herbicides don't work well
- Manure is cheapest but availability limited
- Organic production requires price premium
- Project to continue 2 more years (OFRF, W-SARE)