Practical Use of Tomography as a part of Tree Risk Evaluation For the 2014 Annual California Tree Failure Report Program January 9, 2014

Key Points on Tree Tomography:

Tomography: a technology that produces a cross sectional image (*tomogram*) of a 3-dimensional object. Examples, x-ray, MRI, CAT scan, ultrasound, PET scan.

Tree Tomography: two types – **sonic** (acoustic) measures relative density, and **electric resistance** which measures moisture gradient and ion concentration.

Why is Tomography used in Arboriculture?

- To better understand the interior structural condition of trees.
- To provide a more accurate estimate of Tree Risk
- To facilitate management decisions about trees.
- To graphically document a representation of the cross-section of the scanned area of the tree.

How is Tomography best used in Arboriculture?

- Trees that are good candidates for tomography are identified during a basic tree evaluation.
- Tree owners/managers are informed about tree tomography pros, cons and limitations.
- Specifics of tree & environment are evaluated; tomography proposed if there is a good probability that it will provide useful information.

Accurate tree cross-sectional geometry is important in tomography in order to most accurately assess the impact of decay or cavities on load-bearing capacity. The location of the decay relative to the geometry of the cross-section can be as or more important than the extent of that decay.

Service since 1984

What do tomograms show?

- Sonic tomogram shows the density of a tree
 - This can give an indication of the mechanical strength of the tree.
 - It can show internal decay not visible from the outside.
 - Cracks and included bark can also be observed.
 - Electric Resistance tomogram shows the moisture gradient of the cross section
 - Image integrity not affected as much by cracks or included bark.
 - Can help clarify questionable areas in sonic scan, e.g. if an area of low density is a cavity or if there is material (wood) present.
 - May identify early decay.

Interpretation of Tomograms:

- Art & Science
- Much practice and guidance needed
- Dissection studies are the best confirmation of tomogram accuracy do whenever possible to learn!
- Sonic tomograms watch out for acoustic shadows caused by cracks
- Electric resistance tomograms harder to interpret, most accurate when species "Type" known.

How Long Does Tomography Take?

- Manufacturer says simple and quick, but it is usually not.
- 20 min. for scan at one level (small, uniform tree, e.g. 24" DBH w/ smooth, round x-section).
- 1.5 several hours for larger, gnarly, non-uniform cross section and/or scans at multiple levels.
- Several hours to all day, or multiple days for large, non-uniform trees with complicated shapes and/or scans at multiple levels

Pros and Cons of Tree Tomography:

- Pros
 - Proven record of applicability in other fields
 - Can see inside tree better than any method available
 - See entire cross-section at once
 - Good graphic output
- Cons
 - Relatively expensive
 - Long Learning Curve
 - Complicated to use
 - Limited use in USA
 - Marginal manual
 - Software could be improved
 - Not useful for roots

Service since 1984

Managing Client Expectations:

- Tomography cannot tell us if a tree is "safe" or not.
- Tomography provides information only about the scanned plane(s), not the entire tree.
- A tomogram is a snapshot in time decay can continue to progress, but so can adaptive growth

Good Candidate Trees for Tomography:

- Specimen trees of high value, such as historic trees.
- Trees that could cause appreciable damage or injury if they failed.
- Large, old trees with interior decay or other structural problems that are difficult to see by other methods.
- Trees for which tomography has a good probability of providing additional information that can be used to help make management decisions about the tree.
- When tomograms would be useful in providing legal or other documentation

Poor Candidate Trees for Tomography:

- Trees that are obvious "Goners".
- Trees were simpler methods of analysis will provide adequate information, for example visual observation, mallet tapping, probing, etc.
- Trees with multiple structural or health issues that tomography cannot adequately address.

Lessons Learned:

Sonic Tomography:

- Old, large trees usually contain some decay
- Even with cracks, sonic tomograms seem reasonably accurate, according to the dissection studies we have done.
- Tree body language often explains tomo anomalies

Electric Resistance Tomography:

- Electric tomograms can be enhanced and made more useful by adjusting contrast and electric range profile.
- Electric tomography detects reaction wood
- Electric tomography may detect early decay
- Tree body language often explains tomo anomalies

Conclusions:

- Use tools (such as Tomography) judiciously.
- Make sure the client has a basic understanding of tomography before proposing this technology.
- Use Tomography in concert with all of your other arboricultural knowledge and skills.
- Tomographic information must be taken in context within an overall tree evaluation.

PO Box 3714, Saratoga, CA 95070. 408-725-1357. decah@pacbell.net. http://www.decah.com.

Consulting Arborist & Horticulturist

Service since 1984

Conclusions (continued)

- Tomography will not make up for lack of arboricultural knowledge & experience.
- Tomography is a good tool, but like all tools it has limitations.
- Tomography should be taken seriously!

Tree Tomography Research:

- Decay Detection in Red Oak Trees Using a Combination of Visual Inspection, Acoustic
 Testing and Resistance Micro-drilling. <u>Journal of Arboriculture & Urban Forestry</u>. Vol. 34, No.
 1. International Society of Arboriculture. January 2008. Wang et al.
- Development of Decay in the Sapwood of Trees Wounded by the Use of Decay-Detecting Equipment. <u>Arborist News</u>. International Society of Arboriculture. December 2010. Schwarze.
- <u>Diagnosis & Prognosis of the Development of Wood Decay in Urban Trees</u>. En Spec Pty. Ltd. 2008. Schwarze.
- Quantifying Wood Decay in Sydney Blue gum (Eucalyptus saligna) Trees. International Society of Arboriculture. <u>Journal of Arboriculture & Urban Forestry</u>. Vol. 36. No. 6. November 2010.

Other Useful Information:

- Link to tomography information on D. Ellis web site: http://www.decah.com/picus.html
- Basic Aspects of Mechanical Stability of Tree Cross-Sections. Rinn. <u>Arborist News</u>. February 2011. Pp. 52-54.
- Shell-wall Thickness & Breaking Safety of Mature Trees. Ibid. Western Arborist. Fall 2013. Pp. 14 18.

Thank You To:

- <u>Dr. Larry Costello</u>, U.C.C.E. Horticultural Adviser, Emeritus San Francisco and San Mateo Counties. For his help in getting started with tree tomography in the San Francisco Bay Area.
- <u>Don Hodel</u>, U.C.C.E. Horticultural Adviser, Los Angeles County. For his assistance in tomography of palms.
- For their help in supplying trees for tomographic dissection studies and supplying tree service help in cutting these trees at the levels of the scans:
 - > **Jess Running** of Davey Tree Service Company, San Francisco Bay Area Peninsula Division, Redwood City, Califor4nia.
 - > Jim Lewis of the Tree Team Tree Service, San Jose.
 - ▶ Jim McClenahan, S.P. McClenahan Tree Service Company, Portola Valley, California.
 - > Chuck McDonnell, Facilities Manager, Palo Alto Unified School District, California.
 - ➤ **Lothar Goeke**, Argus Electronic, Rostock, Germany. For his assistance in the use of the Picus tomography equipment, and interpretation of tomograms.