Pollination Requirements, Fruit Set and Blanking

Gurreet Brar, Ph.D Farm Advisor Fresno & Madera Counties University of California

Cooperative Extension

University of California
Agriculture and Natural Resources

- Pistachio is dioecious:
 - Pistillate and staminate flowers on different trees
- Pinnately compound leaf
- Each leaf subtends a single axillary bud
- Axillary buds inflorescence primordia
 - Produce nut bearing rachis the following year

Photo: Maksim (Wikipedia.org)

Botany: Inflorescence

- Panicle
 - Hundreds of flowers
 - Set less than 4%
 - Average 14 nuts/cluster
- Apically dominant
 - Most nuts terminal flowers
- Parthenocarpy

Photo: Gurreet Brar, UCCE

Botany- Fruit

- Fruit is a drupe
- Consists of three parts:
 - An exocarp
 - A fleshy mesocarp
 - An Endocarp (encloses a seed)
 In pistachio seed is consumed

Pollination

- Definition: Transfer
 of pollen grains from
 anthers to the stigma
 by wind or by
 pollinators (agents of
 pollen transfer)
- Pistachios are wind pollinated

Factors affecting pollination

- Type and placement of pollinizers (male tree)
- Wind speed
- Heat
- Frost
- Rain

Placement of pollinizers

- Pollen 20-30 μm dia., circular to elliptical
- Pollen dispersal-
 - Direct inertial collision on windward surface
 - Sedimentation on leeward surface

High wind speed reduced capture on leeward

Windward

Leeward

University of California
Agriculture and Natural Resources

Photos: Gurreet Brar, UCCE

Pollen distribution

- Erdogan et al., 1998:
 - Vaseline coated glass traps-2 m above ground
- Pollen concentration decreased with distance
- Maximum distance of 20m

Ratio of male: female trees

Australia- 1:9

Iran- 1:30

California- 1:24

Male tree placement: Every 5th tree every 5th row

1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	7.	3	4	5	6	7	8	9	10	11	12	13	14
1	2	95 m	1 %	AR	6	7	8	9	10	11	12	13	14
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	20.		4	14.	6	Aver	rage= 2	20.64	m .0	11	12	13	14
1		3	4	5	6	7	8	9	10	11	12	13	14
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	2	3	4	5	6	7	8	9	10	11	12	13	14

University of California
Agriculture and Natural Resources

Bloom period

- Overlapping of bloom is essential
 - Specially during initial portion of female bloom
- Peak male bloom=First 2-3 days of female flowers receptivity

- Polito & Pinney (2000): Timing of pollination
 - Early pollination- set twice fruit than late
 - However, had greater number of blanks

Bloom period

- Unsatisfactory pollination
 - Variable flowering period in females & male trees
 - Incorrect ratio of males
- Porlingis & Voyiatzis, (1993)- Paclobutrazol effective in delaying anthesis
- Pontikis (1975): DNOC sprays in late Jan.females flower early 7-15 days/shorter bloom

Bloom period

- Beede et al., 1997-2002: Dormant oil
 - Oil assists in overcoming delayed leafing and erratic bloom caused by inadequate chilling
 - May have phytotoxicity issues (use with caution!)
- Ferguson et al.1996,: Dormex (Hydrogen cyanamide)
 - Significantly higher % split in-shell on PG-1, UCB-1
 - Less number of blanks
 - Dormex: significantly better results in a low chill year

Supplemental pollen?

Crane and Iwakiri (1983)

- Studied inflorescence & artificial pollination
- Diagram of average inflorescence studied:
 - A central axis (rachis)
 - 13 primary laterals
 - Each bearing one terminal & 5-19 lateral

University of California
Agriculture and Natural Resources

What they found?

- Although 92% of flowers borne laterally, only 5% of them set fruits
- Only 8% flowers were terminal, 66% of them set fruits
- Evidence of strong apical dominance
- Flowers become receptive at different times

Supplemental pollination not effective when abundant pollen available

Supplemental pollen?

- Supplemental pollen treatments increased fruit set to 12% vs 6% (control) [Caglar *et al.*, 1995)
- 16.2% more fruitlets/cluster [Vaknin et al., 2001]
- % blank nuts down to 6.32% & 10.9% vs 20.05% for control

Supplemental pollen?

- Abu-Zahra & Al-Abbadi (2007):
 - Tested 2,4,6,& 8% mixture with soft wheat flour

Supplemental pollination

- -not effective when abundant pollen
- -may benefit when there is lack of pollen
- Excessive pollen germination on stigma negative correlation with yield (Vaknin et al., 2002)

Other factors affecting pollination

- Frost:
- Gholipour (2006): Critical temps. for chilling injury
 - Injury levels ~ phenology of blooming
 - -4° C at bud stage; -2° at blooming; +2° at flowering

Nut set & development

- 2 days after pollination: Fertilization takes place
- 11 days after pollination: Many embryo sac contents degenerate due to lack of pollination
- First 10 weeks: considerable shell size growth,
 but little kernel development
- 10-12 weeks after pollination: kernel begins to enlarge

Nut Blanking

- Blank nuts- the shell is present, but no kernel
- Possible causes-
 - Inadequate pollination?
 - Ineffective fertilization?
 - Competition among developing kernels?
 - Parthenocarpy?
 - Blockage of Vascular transport (work by Polito, V.)

Seedlessness

Parthenocarpy: Fruit formed without fertilization Example: Seedless citrus

Stenospermy: Post-fertilization embryo abortion;

- Fertilization & some degree of embryo growth needed
- Example: Seedless grapes

In pistachio, single ovule is anatropous: The funiculus is curved such that micropyle points to the placenta

University of California
Agriculture and Natural Resources

Source: Wikipedia

1. Vascular transport active through funiculus to ovule

2. Vascular transport blocked

Breakdown in kernel development- sometime between fruit's full size attainment & start of kernel development

Source: Polito (1999)

- At full bloom: All ovules showed transport
- 1 week after bloom: 78%; 2 weeks: 53% & 63%
- 7-8 Correlated well with Transport blocked in all
- 9-1 Correlated well with percentage of blanks!

University of California
Agriculture and Natural Resources

Source: Polito (1999)

med, in 78, 82 & 90%

Presence of endosperm

Early on, similar % of samples lacked endosperm

6 weeks after bloom: Intact VT - 100% ovules had endosperm;

Ovules with blockage: only **59%** had endosperm

This suggests:

- That vascular conductivity ceases during pericarp growth; intense metabolic activity
- And resumes when ovule begins to grow
- Resumption in ovule with endosperm; not in ovules lacking endosperm
 Unfertilized ovules?

Parthenocarpic fruit set - an important factor in nut blanking

Post-fertilization factors?

- Abnormal fruits/ovule degeneration:
 - Deformed/absent embryo sac
 - Early degenerated embryo
 - Funiculus degeneration
 - Lack of pollen tube penetration
 - Endosperm growth interruption
 - Embryo destruction during globular stage

Post-fertilization causes?

- –Due to stress-
 - Water
 - Nutrients
 - High sink demand
 - Insect pests?

Insect Exclusion Studies

Cara Allan & Louise Ferguson (2013,14)

- Pete 1: Bagged vs. Un-Bagged Clusters
- No difference in average % of filled split nuts
- Bagged clusters had fewer nuts

Thinning Trial

Cara Allan & Louise Ferguson (2013,14)

Treatment	Weight of Harvest (lbs)	% Edible Split	% Total Edible	
Control	69.44	58.66	67.15	
Thinning half of each cluster	69.83	57.01	65.45	
Thinning to one cluster/branch	51.06	61.76	70.03	

Source: Allan C. & Ferguson, L. (2014)

 No increase in the percentage of edible split nuts or the percentage of edible nuts (splits, kernels, and close-shelled nuts)

- Effect of pollen source on seed (Xenia) and on fruit (Metaxenia)
- Hormaza & Herrero, 1998:
- Interspecific:
 - P. atlantica pollen on P. vera some traits
- Intraspecific:
 - -Within the P. vera cultivars- no effect

Gurreet Brar & Louise Ferguson (2013,14)

- 2 sites, 2cultivars
- 4 clusters/tree bagged
- Pollination:
 - 4 clusters with Chico
 - 4 with Randy pollen
- Blanks counted
- 5 nuts/cluster for size
 & weight
 measurements

University of California
Agriculture and Natural Resources

In a Shell

- Supplemental pollination
 - not effective when abundant pollen
 - may benefit when there is lack of pollen
- Lack of pollen: Understanding chill better
- Time to revisit dormant oil or Dormex?
- Source-sink relations on nut blanking
 - Parthenocarpy vs. carbohydrate allocation
- Post-fertilization stress may contribute to blanks

Thank you!

- Acknowledgements:
 - Dr. Louise Ferguson
 - California Pistachio Research Board