Rootstock Research for Current and Future Options

Andy Walker awalker@ucdavis.edu

UNIVERSITY OF CALIFORNIA DAVIS

Thanks!

- CA Grape Rootstock Improvement Commission / CA Grape Rootstock Research Foundation
- CDFA NT, FT, GV Improvement Advisory Board
- American Vineyard Foundation
- CA Table Grape Commission
- Louis P. Martini Endowed Chair in Viticulture
- E&J Gallo Winery

Walker Lab

Summaira Riaz **Alan Tenscher Dan Ng Rong Hu** Nina Romero **Cecilia Agüero Claire Heinitz Kevin Fort Brian Ramirez Evan Goldman Cecilia** Osorio **Cassie Bullock Jake Uretsky Tarana Shaghasi Joaquin Fragga Philippe Venghiattis Inés Hugalde Howard Ferris Liang Zheng Jeff Granett Andrew McElrone Dario Cantu**

Rootstock Breeding

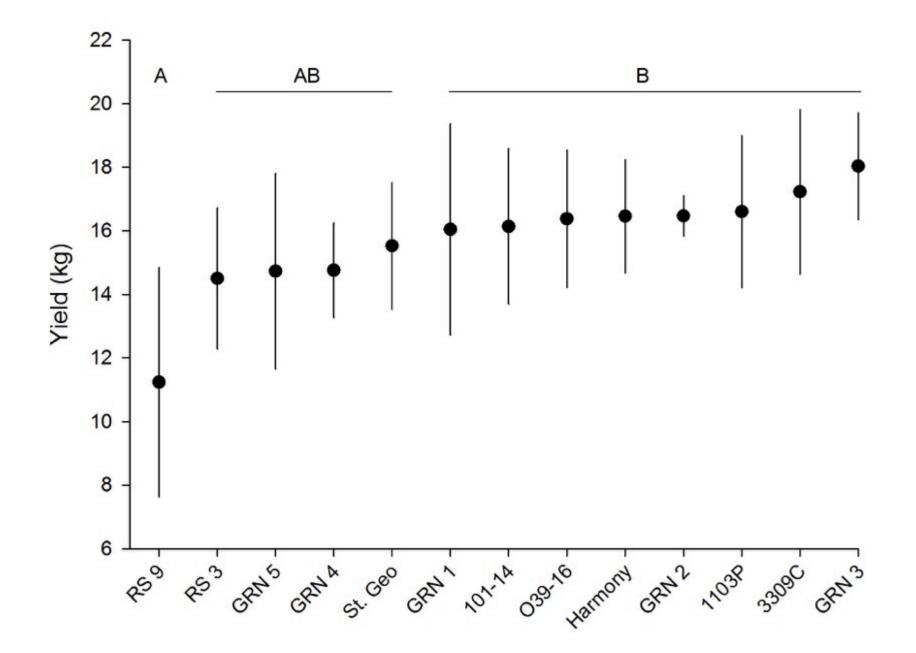
- Genetic mapping to allow MAS and stacking / combining traits
- Add salt and drought resistance to the GRN rootstocks
- Add ring resistance from *rotundifolia*
- Add vigor control and virus tolerance
- Campus rootstock trials with 101-14 and 1103P standards
- Field trials (in collaboration with farm advisors/ growers) and pre-release to FPS

New Rootstock Releases

- Resist 3 strains of root-knot including two that feed on Harmony and Freedom, and *Xiphinema index*.
- Resist all the above in one inoculum
- Resist all the above at high soil temperatures
- And ...

GRN Parentages

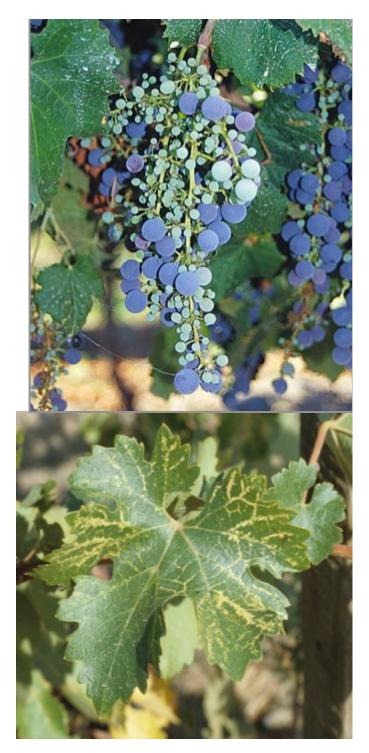
- GRN-1 = 8909-05 *rupestris* x *rotundifolia* 'Cowart'
- GRN-2 = 9363-16 (*rufotomentosa* x (Dog Ridge x Riparia Gloire)) x Riparia Gloire
- GRN-3 = 9365-43 (*rufotomentosa* x (Dog Ridge x Riparia Gloire)) x *champinii* c9038
- GRN-4 = 9365-85 (*rufotomentosa* x (Dog Ridge x Riparia Gloire)) x *champinii* c9038
- GRN-5 = 9407-14 (Ramsey x Riparia Gloire) x *champinii* c9021


GRN Rootstock Summary

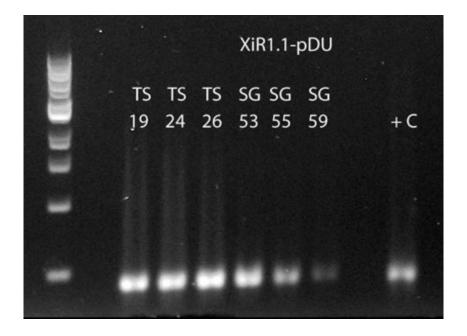
	Citrus Nematode	Ring Nematode	Phylloxera Nodosities	Rooting Depth
GRN-1	R	R	HR	D
GRN-2	MS	S	HR	S
GRN-3	R	S	R	Μ
GRN-4	R	MS	R	М
GRN-5	R	MR	MS	D

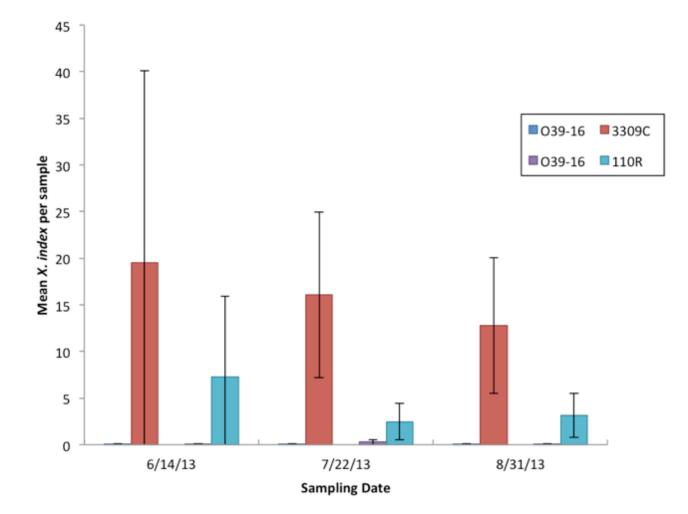
They all resist all 3 strains of root-knot, *X. index*, these combined, and at high temperatures

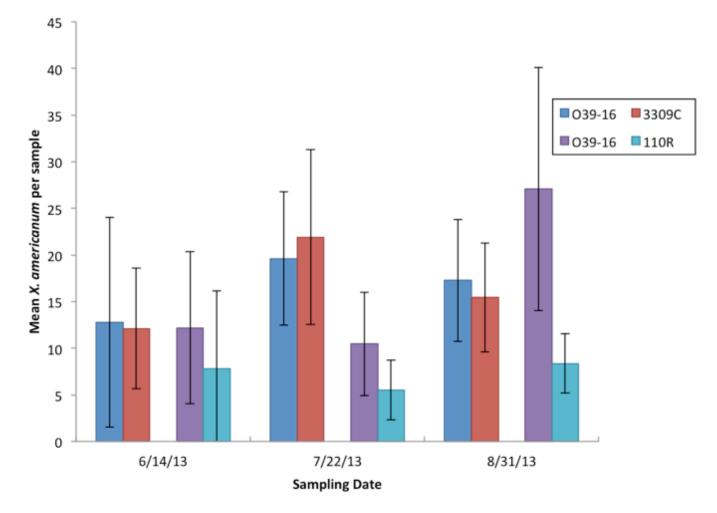
Rootstock	Yield (kg), 29Sep14	Cluster number, 29Sep14
RS 9	11.2 A	88.2
RS 3	14.5 AB	99.5
GRN 5	14.7 AB	95.5
GRN 4	14.7 AB	87.7
St. Geo	15.5 AB	98.3
GRN 1	16.0 B	86.5
101-14	16.1 B	99.3
039-16	16.3 B	100.5
Harmony	16.4 B	95.9
GRN 2	16.4 B	102.1
1103P	16.6 B	96.9
3309C	17.2 B	97.9
GRN 3	18.0 B	104.5


Gallo Lodi – 2011, Malbec, Wye trellis 6x10, randomized with five 5vine reps; *X. index* and *X. americanum* (low), high ring, mod – high root-knot; low lesion

Fanleaf Degeneration


- GFLV/*Xiphinema index* disease complex
- O39-16 (VR hybrid) it induces tolerance to fanleaf disease
- GRN resistance? Induced tolerance GRN-1?
- O39-16 as a nematicide and root longevity


Genetic transformation of *V. rupestris* St George and *V. vinifera* Thompson Seedless with *XiR1.1* and *XiR1.2*



Inoculations Fall 2014

Evan Goldman Xi /Xa Population Sampling

Evan Goldman– Xi / Xa Population Sampling

Fanleaf Degeneration – Cecilia Agüero

- Have a resistant *vinifera* x *rotundifolia* rootstock 039-16
- What O39-16 root-based feature compensates for the impact of GFLV on set?
- Is this factor a cytokinin or cytokinin precursor?
- We are evaluating xylem metabolites
- We need a genetic or biochemical marker for fanleaf tolerance
- Dario Cantu to take "omics" approach

Rotundifolia-based populations

- Resist root-knot, dagger, ring, citrus, lesion, phylloxera ... and fanleaf disease
- GRN-1 (*rupestris* x *rotundifolia*)
- 101-14Mgt/161-49C/5BB/Dog Ridge x *M. rotundifolia* 'Trayshed'
- Search for fertility very rare event ... thousands of failed crosses
- Testing fertile *vinifera* x *rotundifolia* (VR) hybrids phylloxera resistance and rooting to overcome the breeding "dead-end"

New Sources of Ring Nematode

(Mesocriconema xenoplax) Resistance

			HarmA&
		Nemas/ g	C egg
Selection	Parents	root	m/g root
11137-01	161-49C x <i>doaniana</i> T9	0	2.5
11138-02	5BB x <i>rotundifolia</i> Tray	1	0
11137-19	161-49C x <i>doaniana</i> T9	4	1.5
11138-01	5BB x <i>rotundifolia</i> Tray	7	0
GRN1	<i>rupestris</i> x <i>rotundifolia</i> Tray	7	0
11133-13	acerifolia OKC1S03 x St. George	17	3.4
11115-13	161-49C x <i>rotundifolia</i> Tray	24	0
Harmony	1613C op x Dog Ridge op	679	27.1
St. George	rupestris	1209	38.9
Colombard	vinifera	1891	28.6

100 selections from 400 seedlings, tested for rooting, root-knot and *X. index*; 4 replicates; 1,000 nematodes / pot; 3 months of feeding

2013 & 2014 Rootstock Crosses

		#Seeds
Purpose of Cross	Parentage	<crosses></crosses>
Salt resistance and root	Ramsey x	
angle	Riparia	>1800
Salt and drought resistance	Riparia x 140Ru	>500
	Ramsey x	
Soil pest resistance	Trayshed	60
	Fertile VR x	
Rotundifolia resistance	rootstocks	<100s>

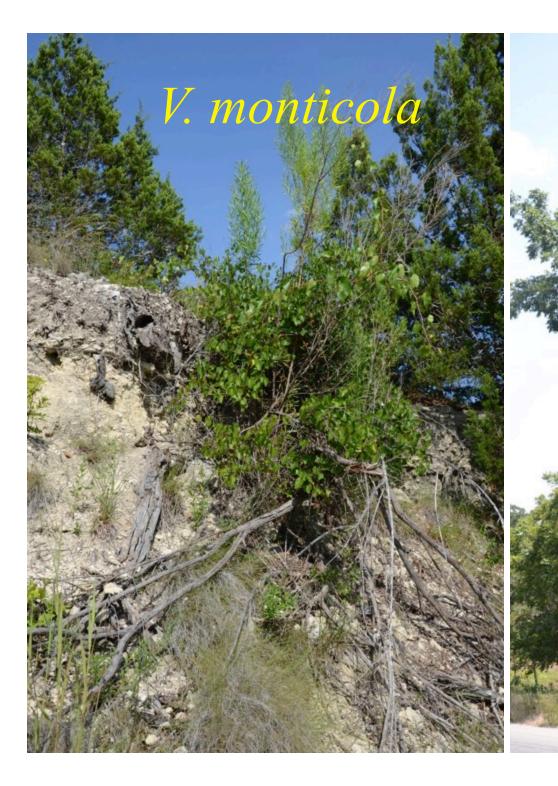
2014 Selections

Purpose of Cross	Parentage	Resistant Selections
Improve GRN5; HarmA&C and Xi	101-14 X GRN5	2
Reduce GRN vigor; HarmA&C, Xi	101-14 x GRN2 and 4	6
PD rootstocks; resist HarmA&C Xi	5BB X b40-14 or R8916-22	3
PD rootstocks; resist HarmA&C Xi	08314-31 X Schwarzmann	3
Resist HarmA&C and Xi; rotundifolia parentage	T6-42; 161-49C; 5BB X St. George or Trayshed	6

Breeding Rootstocks to Tolerate Drought

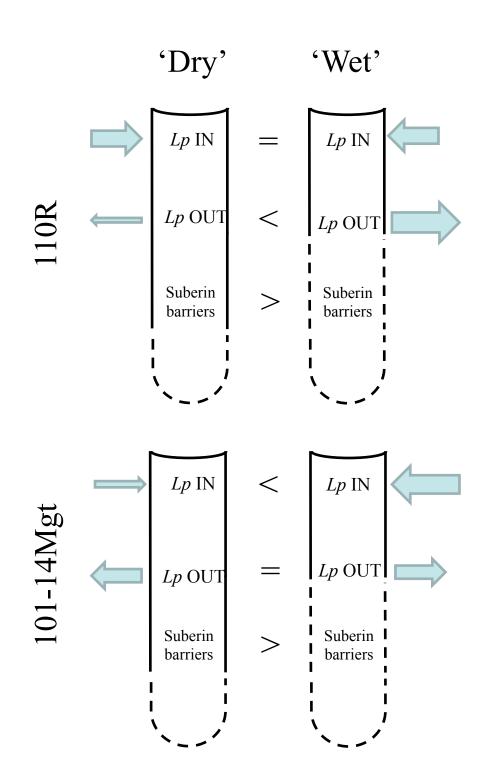
- The ability to continue growth when exposed to water stress
- Adaptation vs. resistance
- Root architecture shallow to deep rooting angles
- Root density two tiered to even distributions
- Fine root recovery after drought
- Structural roots which persist?
- Hydraulic lift
 - Water uptake and permeability of structural roots
- In collaboration with Andrew McElrone

V. riparia


V. rupestris

Jack Fork River, MO Wichita Refuge, OK

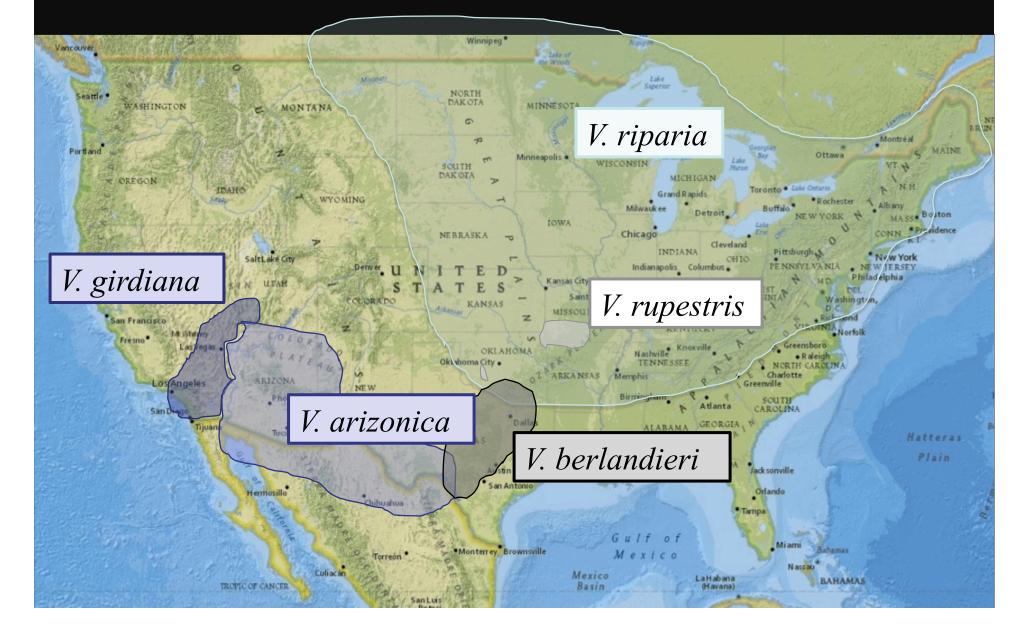
V. berlandieri



Root architecture

- The root system of rootstocks can be deeply penetrating or shallow reflects its water needs and utilization
- The density of roots in the soil profile also varies
 - Evenly distributed
 - Primarily deep
 - Primarily shallow

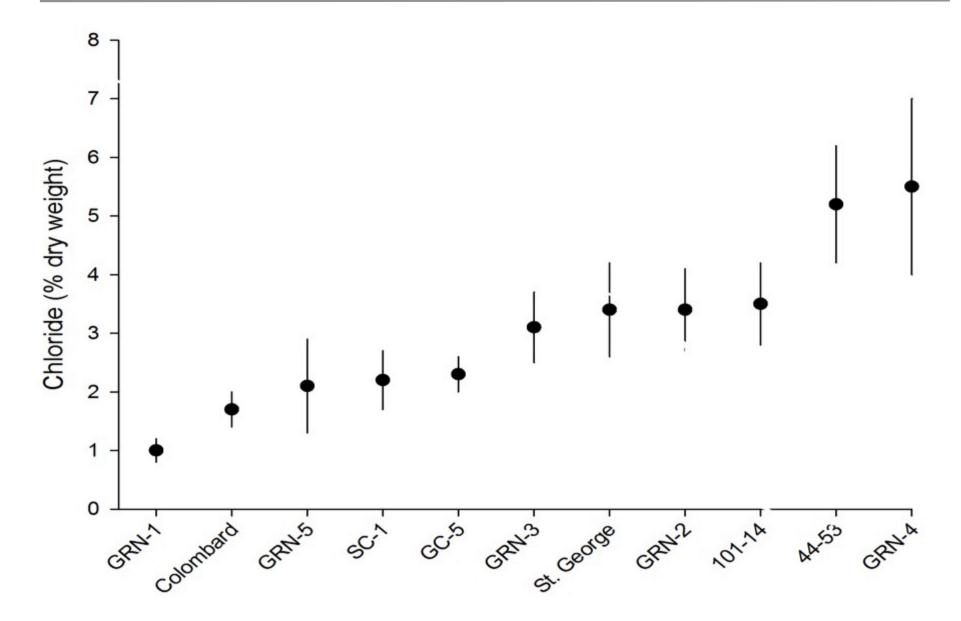
V. berlandieri



<u>101-14</u> water permeability decreases into roots, but maintains leakiness under drought

McElrone Collaboration

<u>110R</u> maintains water permeability into roots, but limits leakiness under drought


North American Vitis

North American Vitis

Salt resistance– GRNs

Salt resistance - 150mM, 2 weeks

		#Salt
Selection	Parentage	resistant
12-102-03	101-14 x NM03-17 (<i>treleasei</i>)	13
12-108-28	101-14 x 9028 (doaniana)	3
12-125-03	OKC-1 SO1 (<i>acerifolia</i>) x GRN-2 9363-16	4
12-126-02	OKC-1 SO1 (<i>acerifolia</i>) x GRN-4 9365-85	1
12-126-08	OKC-1 SO1 (<i>acerifolia</i>) x GRN-4 9365-85	2
12-129-22	OKC-1 SO1 (acerifolia) x St. George	4
12-142-04	girdiana-11 x arizonica A56	7
12-143-09	girdiana-22 x arizonica A56	2
12-144-01	girdiana Scotty's Castle x arizonica A56	9

Salt resistance - 150mM, 2 weeks

		#Salt
Selection	Parentage	resistant
12-153-18	Ramsey x 9028 (doaniana)	1
12-154-13	Ramsey x St. George	1
12-154-28	Ramsey x St. George	4
12-158-17	161-49C x St. George	1
12-185-03	GRN-3 9365-43 x berlandieri 9031	2
12-189-17	Dog Ridge x 140 RU	1
12-190-14	Dog Ridge x St. George	3
Vru 2	rupestris from Missouri	
Vru 85	rupestris from Missouri	

Virus Tolerance – Cecilia Agüero, Dario Cantu

- Leaf roll strains/ species and interactions?
- Corky bark and others
- Red blotch
- AXR#1, St. George?, fertile VR (*vinifera* x *rotundifolia*) hybrids
- Can we breed for "red leaf" virus tolerance?

- Many perennial root systems mimic top growth – grape roots are vine-like
- Grape roots are sparsely scattered in the soil profile without drip or with adequate rainfall

- Grape roots are poor sinks shoot tips; fruit; trunk; and then roots
- Species and rootstocks vary in their ability to produce/regenerate feeder roots

- Some species/rootstocks produce abundant fine roots, others do not – 110R, 1103P vs 101-14
- Some species/rootstocks produce more structural roots

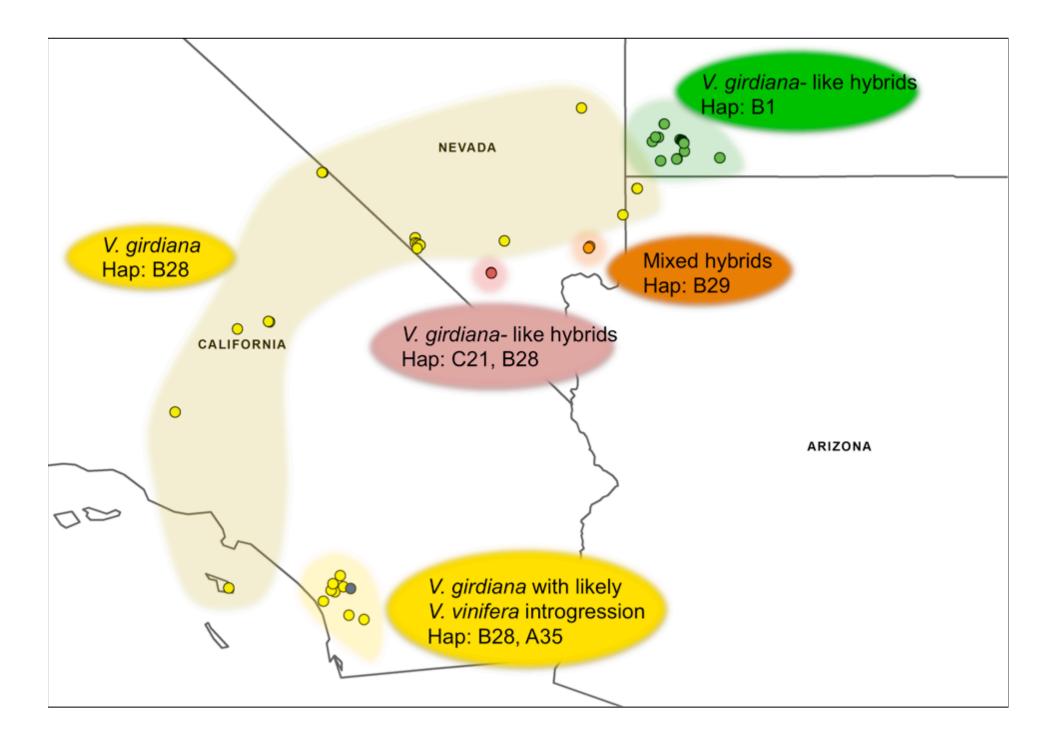
- Some hydraulically lift water redistribute it within the roots
- Root behavior/structure will have an impact on downwardly mobile insecticides

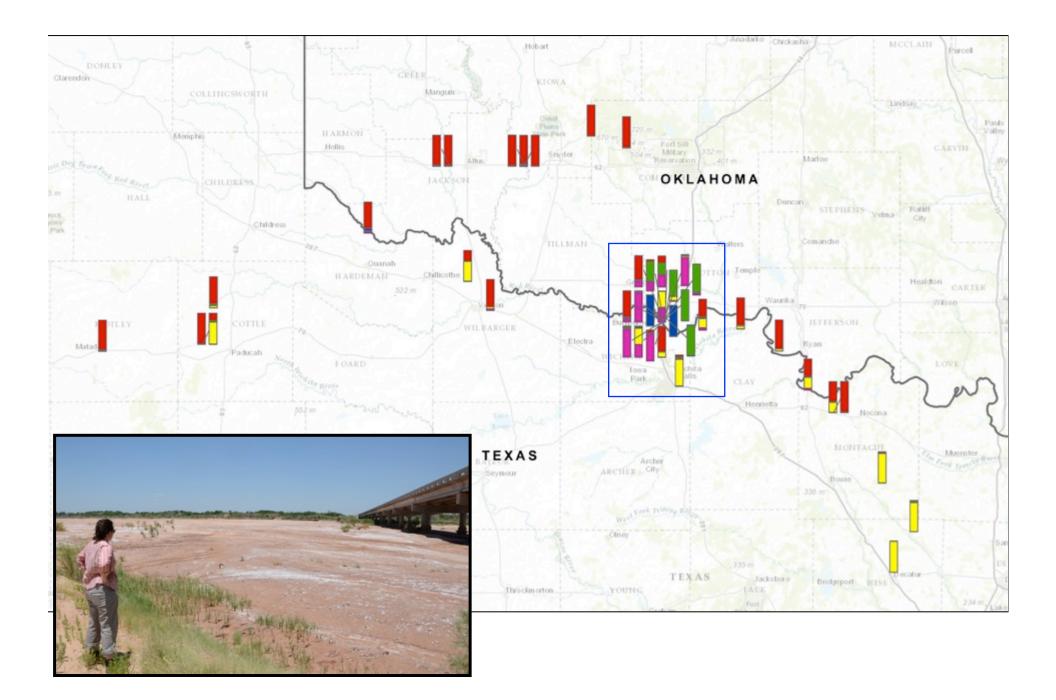
RS-3 & RS-9 (Ramsey x Schwarzmann)

- Bred by David Ramming, selected by Mike McKenry; released in 2003 limited trial data
- RS-3 (1103P+) is more vigorous than RS-9 (101-14Mgt)
- Good nematode resistance RKN and *X. index*
- Designed to have better nematode and phylloxera resistance than Freedom/Harmony, but less vigor than Ramsey/Dog Ridge

USDA Rootstock Selections

- 10-17A = Edna (America (sdlg Jaeger 70 (*lincecumii* x *rupestris*) x Malaga) x male simpsonii
- 10-23B = *V*. *doaniana*
- $6-19B = 10-6B \times 9-22C$


10-6B and 9-22C = GA 3-4-5 x Dog Ridge 5


Peter Cousins USDA Rootstocks

- Released in 2010 as alternatives to Freedom
- **Matador** and **Minotaur** siblings from a cross of 101-14 Mgt x 3-1A (*candicans* x *rupestris*)
- **Kingfisher** 4-12A (Dog Ridge x *rufotomentosa*) x *V. riparia*
- Resistant to Harmony and Freedom strains of root-knot nematode
- Field testing at UC Kearney Station

Other Sources of Nematode Resistance

- 1616C, Riparia Gloire, Börner
- 101-14Mgt 5C, 5BB
- 1103P
- Harmony, Freedom, Ramesy, Dog Ridge

