# UCCE Master Gardeners of El Dorado County Present



**University** of **California** Agriculture and Natural Resources

> Making a Difference for California

# Water Efficient Gardening in the Urban Landscape Presenter: Stephen Savage

#### **University of California**

Agriculture and Natural Resources

California Master Gardener Cooperative Extension El Dorado County Making a Dillorones For California

# The Earth is Not A Toy



#### University of California Agriculture and Natural Resources

Making a Difference for California

### Treat It As If Were Your Home







# **Course Outline**

- I. Why Conserve Water
- II. Hydrologic Cycle
- III. Water Movement in Plants
- **IV.** Managing Irrigation
- V. Water Application Methods
- VI. Methods That Conserve Water
- VII. Measuring Water Loss
- **VIII. Surviving Drought**

# Why Are We Here?

I. Why Conserve Water? Climate Change- Effect on the Sierra Nevada

Depletion of Our Aquifers - California

Contamination of Aquifers – Foothills, Valley







## Climate Change – Effects on Sierra Nevada

Sierra Nevada – 65% of California's water **Decline in runoff Glacial retreat** Snow pack decreasing **Rise in snow level** Peak runoff timing off-storage capacity

# **Aquifers**

Levels falling **Over drafted** Year round creeks and rivers drying **Increased pumping to supplement** decreased runoff **Aquifers** depleted

### **Contamination of Aquifers**

- Nitrates
- Salts



From: groundwater.udcavis.edu/files/136273.pdf

## The Biggest Aquifer Disaster of All The Ogallala



- Covers 175,000 miles <sup>2</sup>
- Created ten million years ago
- In many places it is not recharged by rainfall
- Pumping at current rates will deplete South end in 7 – 10 years, North end possibly 20 years
- When it collapses, it can not be recharged; when its gone, its gone!
- No pumping restrictions in Texas. You can Pump it dry if you want to.

# II. Hydrologic Cycle

- Precipitation
- Condensation
- Evaporation
- Transpiration
- Surface/ subsurface runoff
- Percolation
- Capillary Action



# Hydrologic Cycle cont.

- Precipitation prime water source
- Evapotranspiration chief cause of water loss

heat to air

heat to ground

evaporation

transpiration

transpiration

# III. Water Movement in Plants How Water Moves in Plants



# How Water Moves: Soil/Water Bonding How tightly the soil holds onto water

- Energy required to remove water from the soil
- Measured as kPa



**Moisture Retention Curve** 

Image Source: adapted from J. H. Lieth

#### Water Movement in Plants cont.: Soil/Water Bonding Available and unavailable moisture



Energy required to remove water

Image Source: adapted from J. H. Lieth

Water Movement in Plants cont.:

# Soil/Water Bonding

## Available Water By Soil Types:

- Field capacity
- Available H<sub>2</sub>O
- Wilt point
- Unavailable water



Figure 14. Available water for different soil textures. The proportion and absolute amount of water available to the plant in coarsetextured, sandy soils is less than in fine-textured, clay soils.

### Water Movement in Plants, cont. Soil/Water Bonding

Available Water by Soil Type

- Sandy or "DG" soils .5 1.0"/ft. of depth
- Clay 2.0-2.5"/ft. of depth
- Loam

-Sandy loam 1.0 - 1.5"/ft. of depth

-Clay loam 1.5 - 2.0"/ft. of depth

#### Water Movement in Plants, cont. Soil/Water Bonding

### How Plants Respond to Decreasing Soil Water Content



Energy Required to Remove Water

How Water Moves-Soil/Water Bonding cont.

### **Moisture Retention Curve**



Energy Required to Remove Water

#### Water Movement in Plants, cont.

### Practical implications of using a tensiometer

- Let tension rise to 5 kPa
- Begin irrigating
- Stop irrigating when tension falls to 1 kPa



#### Managing Irrigation to Optimize Water Use – When, Where, How Much

| Available $H_20$              | Sand                           | Sandy Loam                             | Clay Loam                                        | Clay                                      |
|-------------------------------|--------------------------------|----------------------------------------|--------------------------------------------------|-------------------------------------------|
| Close to 0%                   | Single<br>grains               | Loose, flows                           | Dry clods<br>breaking to<br>powder               | Hard baked,<br>difficult to<br>break      |
| 50% or less                   | Will not<br>form ball          | Will not form<br>ball                  | Crumbly, will<br>hold ball                       | Somewhat<br>pliable, will<br>ball         |
| 50-75%<br>enough<br>available | Will not<br>form ball          | Will form ball                         | Forms ball,<br>might slick<br>w/ pressure        | Forms ball,<br>ribbons out<br>w/ pressure |
| 75% to field capacity         | Weak ball<br>under<br>pressure | Weak ball,<br>does not<br>become slick | Forms ball,<br>pliable, slick<br>if high in clay | Easily<br>ribbons out                     |

#### Managing Irrigation to Optimize Water Use – When, Where, How Much

| Available<br>Moisture                                       | Sand                                                   | Sandy<br>Ioam                             | Clay loam                     | Clay                               |
|-------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|-------------------------------|------------------------------------|
| at field<br>capacity –<br>won't hold<br>additional<br>water | squeezing,<br>no free<br>water but<br>water on<br>hand | same as<br>sand                           | same as<br>sand               | feels slick, ribbons<br>out easily |
| above field<br>capacity –<br>waterlogged                    | Free<br>water<br>bounced<br>on hand                    | Free water<br>released<br>when<br>kneaded | Free water<br>squeezes<br>out | Puddles form on surface            |

Source: Harris and Coppick 1977, p. 4

Water Movement in Plants cont.: Soil/Water Bonding Ok, Steve, why did you tell me this?

- Field capacity
- Soil differences
- Looks and feel can fool you

Water Movement in Plants Salt Gradient -

- How salty is the soil?
- How much energy does it take to dissolve it?











### Water Movement in Plants, cont. Salt Gradient – What does this mean...

• Root pressure



When soil is saltier than the sap in the roots:



#### **Ok, Steve, so what?**

- Local plants not adapted to salinity
- Over fertilizing
- Horse manure and other manures
- White crust on soil what's that?
- Container plants ring around the collar

## Water Movement in Plants Gravity Gradient-The energy required to lift water.





# Factoids (Gee Whiz)

- In most species, 98% of the water entering the plant is lost through transpiration
- 48 ft. silver maple transpires up to 58 gal./hr.
- A broad leaf forest transpires about 8000gal./acre/day

# Factoids, cont.

- The average tomato plant transpires about 30 gal. during its growing season
- Corn transpires about 55 gal./plant in its growing season
- The Average Lawn uses 55 gal/sq ft/year
- The average dishwasher uses 4 to 6 gal per load
- The Average kitchen faucet uses 2 gal/minute
- It takes 300 barrels of water to make one barrel of beer
  - **v** Most efficient brewery uses 3 to 4 barrels
  - ✔ Rest of the use comes primarily from irrigation and milling of the barley and hops
# IV. Managing Irrigation to Optimize Water Use

## **Objectives:**

- When, Where, How Much
- Creating an Irrigation Plan
- Keys to Watering Efficiently
- Decrease Run Off of Fertilizers/ Pesticides

Managing Irrigation to Optimize Water Use, cont.

## When, Where, How Much

- Apply water to meet and not exceed plant demand
- Apply water where it can be beneficially used
- Apply water at the intended rate

#### **Determining When:**

#### **Check the Plants**

- Wilted, curled leaves
- Poor fruit or flower production
- Dull or grey-green foliage
- Leaf drop
- Smaller than normal new leaves
- Foot prints remain in lawn

**Determining when** 

## Check the soil

- At the root zone
- Screw driver test
- Hand feel test

## **Determine When, cont'd**

Always check during:

- Periods of high winds turn off
- Temperatures above 86 F.
- Little or no rain

Determining When

**Timing - Early morning** 

- Reduces water loss
- Reduces fungal problems
- Water soaks in deeper

#### LATE AFTERNOON OR EARLY EVENING THE WORST

## **Determining Where:**

- Only in areas that need
- Avoid overspray
- Avoid runoff



## **Determining How Much:**

- Only what is needed
- Hand feel test or tensiometer
- How deep

Lawns, flower beds, garden 12"

Shrubs 1–2 ft.

Trees 2-3 ft.

## Managing Irrigation to Optimize Water Use

**Creating an Irrigation Plan** 

- See handout
- Base the plan on specific need(s) of your garden

Managing Irrigation to Optimize Water Use

## <u>Creating an Irrigation Plan</u> Considerations:

- How large
- How much rainfall and when
- Type of soil
- Area subject to drought or flooding
- Practicality of watering cost and availability
- Type of irrigation high or low pressure
- Where would each type be best used

Managing Irrigation to Optimize Water Use

## Keys to Watering Efficiently:

See handout – "Water Management Tips For Your Landscape"

- Appropriate controller
- Program correctly
- Regularly change controller schedule
- Choose appropriate plant materials
- Soil prep
- Proper horticultural practices

## V. Methods of Applying Water Considerations

- Controller or timer
- High pressure
- Low pressure
- Flood, row, basin
- How to water





#### **Methods of Applying Water**

#### **Controller/timer**

- Use appropriate one for your conditions
- Adequate number of stations
- Flexible programing
- Adjust controller to match needs
- Avoid windy conditions
- Program for morning application
- Consider distribution uniformity
- Consider irrigation efficiency

# Methods of Applying Water

High Pressure Systems (sprinklers)

- Characteristics
- Benefits and Challenges

Use "Can Method" to determine application rate and distribution uniformity



Methods of Applying Water Low Pressure Systems (drip, misters, etc.)

- Characteristics
- Benefits and Challenges

Infiltration measuring/uniformity



# Methods of Applying Water

Flood, Row, and Basin

Flood

**Benefits and challenges** 

- Row **Benefits and challenges**
- Basin **Benefits and challenges**



**Methods of Applying Water** 

## How to Water

- New plantings
   No drought tolerant plants
   Consistent, deep watering until root system established
  - Perennials 1 year Shrubs and trees – 2 + years
- Established plants

Yes – fewer, deep watering No – frequent, shallow watering

 Slopes or heavy clay soil – pulse or cycle irrigation

# VI. Water Conservation

#### How to Water

- Soil types: sandy or DG, loam, clay
- Seasons

#### Adjust frequently – duration and days

| Dec/<br>Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nov |
|-------------|-----|-----|-----|-----|------|------|-----|------|-----|-----|
| 0%          | 0%  | 5%  | 30% | 60% | 90%  | 100% | 90% | 60%  | 30% | 5%  |

July = maximum use

## Water Conservation- How to Water

## Hydrozones

- Grouping plants with similar water needs together
- Or, use plants that tolerate a range of moisture levels together or in transitional areas



## Water Conservation cont.

# Mulch Benefits and cautions Time of day/weather conditions Anti-transpirents/polymers

# Water Conservation

## **Fertilizers**

- Sparingly or not at all in summer
- Phosphorus (P) to increase drought tolerance
- Nitrogen (N) and Potassium (K) REDUCE drought tolerance
- \*\*\*Over Fertilizing leads to nitrates going into sewers, streams, rivers, ocean and aquifers \*\*\*



# VII. Measuring Water Loss

## Evapotranspiration

- CIMIS
- Methods for measuring water loss

Evapotranspiration (ET) What is it? Implications Factors affecting Measuring its rate

#### CIMIS – California Irrigation Management Information System

**Assumptions** 

- Et<sub>o</sub> reference evapotranspiration
- K<sub>c</sub> water use reports per crop
- $K_{I}$  coefficient to estimate site water use

#### CIMIS sites applicable for our area

#### Sacramento (use for Folsom, El Dorado Hills, Cameron Park)

| Jan | Feb  | Mar  | Apr  | May  | June | July | Aug | Sept | Oct  | Nov  | Dec |
|-----|------|------|------|------|------|------|-----|------|------|------|-----|
| .98 | 1.76 | 3.17 | 4.72 | 6.35 | 7.68 | 8.36 | 7.2 | 5.43 | 3.66 | 1.65 | .92 |

#### Camino (use for Shingle Springs, Rescue, Placerville, Camino, Pollock Pines)

| Jan | Feb  | Mar  | Apr | May  | June | July | Aug  | Sept | Oct | Nov | Dec |
|-----|------|------|-----|------|------|------|------|------|-----|-----|-----|
| .98 | 1.68 | 2.48 | 3.9 | 5.98 | 7.2  | 7.75 | 6.82 | 5.1  | 3.1 | 1.5 | .93 |

Method 1: Calculating loss for a large landscape Method 2: Calculating loss based on square footage using plants of same water needs

Method 3: Calculating loss for a single plant

Method 4: Calculating direct water replacement based on water used

<u>Method 1:</u> Calculating water need based on landscape plantings (types of plants in a landscape)

- Reference ET (ET<sub>o</sub>) CIMIS reports
- A landscape coefficient (K<sub>L</sub>) to convert Et<sub>o</sub> to the landscape evapotranspiration (ET<sub>L</sub>)
- Formula for conversion:

 $ET_{L} = ET_{O} \times K_{L}$ 

$$K_L = K_S \times K_D \times K_{MC} \longrightarrow K_s = Species Factor$$
  
 $K_D = Density Factor$   
 $K_{MC} = Microclimate Factor$ 

Example:

Formula:  $ET_{L} = ET_{o} \times K_{L}$ If  $K_{L} = .65$  and  $ET_{o} = .5''/wk$ . Then  $ET_{L} = .65 \times .5$ 

= .325"/wk.

References: A Guide to Estimating Irrigation Water Use Need of Landscape Planting in California

http://www.cimis.water.ca.gov/CIMIS

http://www.water.ca.gov/wateruseefficiency/docs/wucols00.pdf

Method 2: Calculating water need based on square footage (assuming plants are all of same water demand: L, M, H)

1. Determine water demand from table below:

| Plant Type:        | Water Demand Percent Range: |      |  |  |  |
|--------------------|-----------------------------|------|--|--|--|
|                    | High:                       | Low: |  |  |  |
| Low water use -    | .26                         | .13  |  |  |  |
| Medium water use - | .45                         | .26  |  |  |  |
| High water use -   | .64                         | .45  |  |  |  |

### Measuring Water Loss Method 2, cont'd

- Multiply the ET<sub>o</sub> (from table) for either Sacramento or Camino in inches/month by the water demand for the type of plants you have. <u>Note</u>: If you have a mixed landscape, you need to use the first method
- 3. Multiply the result by .623 to convert inches to gallons per square foot
- 4. Determine total square footage of area to be irrigated (assume 450 SF for this example)
- Multiply the gallons per square foot by the number of square feet to determine the total number of gallons required to measure water loss

## Measuring Water Loss Method 2, cont'd

For example, consider Camino in July,  $ET_o = 7.75$  inches per month. We have low water use plants, use the high end of the range (.26). And we have 450 SF to irrigate. Then:

| 7.75 inches/month x .26 | = 2.01 inches/month                               |
|-------------------------|---------------------------------------------------|
| 2.01 x .623             | = 1.25 (to convert inches/month to gallons/month) |
| 1.25 x 450              | = 562.5 gallons/month                             |

# If you want just inches/month, then apply 2.01 inches/month across the entire area

Source: Harvesting Rainwater for Landscape Use, University of Arizona Cooperative Extension, Patricia H. Waterfall

<u>Method 3:</u> Rough calculation for single plant water need

- Use the guide to Estimating Irrigation Water Use (WUCOLS)
- Water Use Classification of Landscape Species (Google WUCOLS IV)
  - 1. Determine your region
  - 2. Find plant
  - 3. Determine if it is a high, medium or low water user
  - 4. Use table to determine actual water use
- Use this number as a rough guide to that plant's summer water needs

<u>Method 4</u>: Direct replacement, no crop or landscape features considered

- Use Table in handout to determine gallons/day for specific plant or for large area square footage (computed using Camino data)
- Gives the number of gallons of water per day to replace ET loss over a given square footage
- You can calculate the gallons used for any square footage by multiplying 1 ft.<sup>2</sup> values by the given square footage To convert system from GPM to Inches of Water per Ft.<sup>2</sup> (see calculation in handout)

GPM x 1.6 = inches of  $H_2O$ /ft<sup>2</sup>/min. OR GPM = inches of  $H_2O/ft^2/min$ 1.6

Summary

We now have multiple ways to determine the irrigation needs of:

- A large landscape planting of varied plants
- A landscape of single water demand plants based on square footage
- A rough calculation for a single plant
- Direct replacement of water used

## VIII. Surviving Drought

Things I can do to:

- Reduce water usage
- Save my landscape



## **Surviving Drought**

#### Things I can do:

- Remove/replace lawn
  - But have a plan
  - What will I replace it with?
- Plant drought tolerant plants
  - No drought tolerant plants when first planted
  - May have to wait
- Install/use drip irrigation
### Things I can do:

- Practice water harvesting
  - More coming
- Save and use grey water
  - Grey water is untreated waste water from your washing machine, shower, and bathroom sinks
- Establish Hydrozones
- Reduce fertilizer use

### Things I can do:

- Watering
  - Water at night or early morning
  - Do not water in high wind
  - Avoid or reduce overspray
  - Water less frequently, but deeply
  - Gradually reduce water application 10% at a time
  - Practice water cycling as needed
  - Manage irrigation to match microclimates
- Mulch
- Crowd plants
- Encourage development of extensive root system

### Things I can do:

- Prioritize plants to save
  - Select plants to receive limited amounts of water available
- Determine which plants can tolerate limited water
- Which plant can be easily replaced sacrifice them
- Remove lower priority plants from crowded areas
- Recognize water stress symptoms to determine how long plants can go without irrigation

### Things I can do:

- Eliminate competition remove weeds
- Repair irrigation leaks
- Use polymers in containers

#### Sources:

http://ccuh.ucdavis.edu/industry/landscapewaterconservationresourcesfordrought.xisx http://ccuh.ucdavis.edu/drought-messages-for-landscape-managers

### Things I can do:

- Water harvesting
  - What is it?
  - The capture, diversion, and storage of rainwater for plant irrigation and other uses
- Can be simple or complex
  - How much are you willing to spend?
  - To use the system, it must rain ... duh!
  - Unless you have a large system, water harvesting can only help marginally

Sources:

Harvesting Rainwater, University of Arizona Cooperative Extension, by Patricia H Waterfall Rainwater Harvesting Methods, http://www.watercache.com/education/rainwater-how/

#### Save and use grey water

- Warm up water from showers and sinks
- Water used to clean fruits and vegetables
- Be careful with dishwater, shower water and laundry water
  - Use only if use friendly soaps and products = biodegradable, non-toxic, sodium and borax free
  - Don't use on acid-loving plants (azaleas, blueberries); soap tends to be high pH (basic), these plants want low pH (acid) soil
- El Dorado County requires permit for all gray water use except laundry water
  - Some rules: do not store more than 24 hours, must stay on your property, must not be used on edible parts of plants

### In the vegetable garden:

- Double dig the beds
- Add compost up to 2%
- Use water-retaining compost: plant matter, rice hulls, polymers (?)
- Plant vegetables that produce in abundance: tomatoes, squash, peppers, and eggplant
  - Use soaker hoses or drip individual plants
  - Crowd the plants close together
  - Mulch

### **Trees**

- Plant native or drought-resistant types
- Choose trees over lawn trees are a long term investment
- Water should soak into the ground, not run-off

### Young Trees

- Water twice per week, about 5 gallons
- Water directly at the base of tree with hose or bucket

### Mature Trees

- Water twice per week with 1 to 1.5 inches of water
- Water deeply
- Put water in the drip zone move hose to several places around the tree

### **Deciduous Trees**

- Critical to give sufficient water in late winter/early spring when new buds and leaves are forming
  - Do not prune unless absolutely necessary
  - Do not fertilize if tree is drought stressed

Source: Sokada@ sacbee.com

#### <u>Lawns</u>

- Pro's for lawns:
  - Coverage for recreational areas
  - Provides cushion beneficial for contact and physically intensive sport
  - Cools the immediate environment
  - Reduces reradiated heat
  - Reduces soil erosion, dust, glare, and fire danger
  - Increases water infiltration
  - Enhances water quality
- Con's:
  - High water use
  - High maintenance

### <u>Lawns</u>

Water use rates (ET)

 Different grasses have different use rates
 Rates vary from .24 to .39 inches/day

ØSee following table

Source: Adapted from Beard and Beard, 2004

### Surviving Drought – Lawns (cont'd) ET Rate common CA turfgrasses

| Relative<br>Ranking | ET rate<br>(in./day) | Cool season<br>turfgrasses                                                                                           | Warm season<br>turfgrasses  |
|---------------------|----------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------|
| very low            | < 0.24               |                                                                                                                      | buffalograss                |
| low                 | 0.24                 |                                                                                                                      | bermudagrass<br>zoysiagrass |
| medium              | .024 – 0.28          | hard fescue<br>Chewing's fescue<br>red fescue<br>Seashore<br>paspalum<br>St Augustine grass                          |                             |
| high                | 0.33 – 0.39          | perennial ryegrass<br>Kikuyugrass                                                                                    |                             |
| very high           | > 0.39               | tall fescue<br>creeping<br>bentgrass<br>annual bluegrass<br>Kentucky bluegrass<br>rough bluegrass<br>annual ryegrass |                             |

### Lawns

- Water use not the same as ability to survive drought
  - Warm season grasses with good drought tolerance: bermudagrass
  - Cool season grass: tall fescue
- **Ø** See following table

### Surviving Drought Drought Resistance of CA turfgrasses

| Relative Ranking | Cool-season<br>turfgrasses                                                                                      | Warm-season<br>turfgrasses                                     |
|------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| superior         |                                                                                                                 | bermudagrass (common)<br>bermudagrass (hybrid)<br>buffalograss |
| excellent        |                                                                                                                 | seashore paspalum<br>zoysiagrass                               |
| good             |                                                                                                                 | St Augustinegrass<br>kikuyugrass                               |
| medium           | tall fescue                                                                                                     |                                                                |
| fair             | perennial ryegrass<br>Kentucky bluegrass<br>creeping bentgrass<br>hard fescue<br>Chewing's fescue<br>red fescue |                                                                |
| poor             | colonial bentgrass<br>annual bluegrass                                                                          |                                                                |
| very poor        | rough bluegrass                                                                                                 |                                                                |

### <u>Lawns</u>

- Irrigation practices involve three strategies:
  - Optimum irrigation = good looking lawn
  - Deficit irrigation = maintains adequate appearance with less growth
  - Survival irrigation = only enough water to allow survival and potential recovery

### **Ø** See following chart

### Surviving Drought Turfgrass optimum, deficit, survival water requirements



### <u>Lawns</u>

- Using ET<sub>o</sub> to determine how much water
  - Remember  $ET = ET_o \times K_c$  (for grass)
  - K<sub>c</sub> to use depends on your survival strategy
- If cool season turf + "deficit" strategy, use  $K_c = .6$
- If "survival" strategy, use  $K_c = .4$ 
  - And use Et<sub>o</sub> for either Sacramento or Camino see handout
- **Ø** See following table

## Surviving Drought - Lawns K<sub>c</sub> values for optimum, deficit, survival levels

| Turfgrass performance<br>level | Cool-season turfgrasses<br>K <sub>c</sub> | Warm-season turfgrasses<br>K <sub>c</sub> |
|--------------------------------|-------------------------------------------|-------------------------------------------|
| optimum                        | 0.80                                      | 0.60                                      |
| deficit                        | 0.60                                      | 0.40                                      |
| survival                       | 0.40                                      | 0.20                                      |

### Lawns

- Mowing strategies
  - Frequency of mowing effects ET: tall grass= high ET
  - Keep grass mowed, but mow at tallest recommended height for type of grass
  - Mowing when it is hot or dry can injure plants
  - In a drought summer, mow infrequently at a taller height
- **Ø** See following table

## Surviving Drought - Lawns Mowing height ranges for common turfgrasses

| Turfgrass species       | Cutting Height range<br>(inches) |  |
|-------------------------|----------------------------------|--|
| Cool season turfgrasses |                                  |  |
| creeping bentgrass      | 0.2-0.5                          |  |
| colonial bentgrass      | 0.5-1.0                          |  |
| red fescue              | 1.0-2.0                          |  |
| Kentucky bluegrass      | 1.5-2.5                          |  |
| perennial ryegrass      | 1.5-2.5                          |  |
| tall fescue             | 1.5-3.0                          |  |
| Warm-season turfgrasses |                                  |  |
| bermudagrass            | 0.5-1.0                          |  |
| zoysiagrass             | 0.5-1.0                          |  |
| seashore paspalum       | 0.5-1.0                          |  |
| St Augustinegrass       | 0.5-1.5                          |  |
| kikuyugrass             | 0.5-1.0                          |  |

#### <u>Lawns</u>

- Fertilizing
  - Most cool season grasses need about 2 lbs actual nitrogen/1,000 square feet (SF) in a season
  - Apply ¼ each application: March-April-September- mid October
  - Do not apply nitrogen from May-August
  - Warm season grasses need .25 lb nitrogen per 1,000 SF between April and September
  - Potassium may increase drought tolerance; apply 1 to 2 lbs per 1,000 SF March or April

Source: UCANR Publication 8395, "Managing Turfgrasses during Drought," M. Ali Harivandi, et al

### **Comparison of Traditional Landscape vs Water-Wise Landscape\***

| <u>Traditional</u>                                                                           |                        | Water-Wise                                                                                                |                |
|----------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------|----------------|
| Moderate to high<br>Water use shrubs,<br>100 ft <sup>2</sup> , Azalea, Gardenia<br>Hydrangea | 140 G/W**<br>′         | Low Water Use<br>Shrubs, Ceanothus,<br>Manzanita, Nandina, Rock                                           | 79 G/W<br>Rose |
| Annual Flowers<br>100 ft <sup>2</sup> , Petunia,<br>Impatience, Lobelia                      | 92 G/W                 | Low Water Perennials<br>100 ft <sup>2</sup> , Salvia, Lavender,<br>Agastache, Achillea                    | 61 G/W         |
| Large Tree Canopy<br>Diameter 20 ft,<br>Tulip Tree, Coast Redwoo<br>Birch                    | 230 G/W<br>d,          | Low Water Tree, Canopy<br>Diameter 10 ft, Redbud,<br>Crape Myrtle, Smoke Tree                             | 57 G/W         |
| Cool Season Turf<br>200 ft <sup>2</sup> , Tall Fescue,<br>Blue Grass                         | 248 G/W                | Non-Turf Perennial<br>Ground Cover, 200 ft <sup>2</sup> ,<br>Germander, Manzanita,<br>Rosemary, Hypericum | 122 G/W        |
| Total                                                                                        | 710 G/W                | Total                                                                                                     | 319 G/W        |
| Based on 500 ft <sup>2</sup> sample landscapt * Gallons per week                             | pe, in August, clay so | il, landscape established at least one                                                                    | year.          |

Source: Sacramento Bee Graphic

## **Other Sources**

Arboretum All Stars: http://arboretum.ucdavis.edu/arboretum\_all\_stars.aspx

Regional Water Authority Plant Guide: www.pwah20.org (click on the link to water wise gardening)

www.riverfriendly.org

http://www.ipm.ucdavis.edu/TOOLS/TURF/MAINTAIN/cazone7.html

Google Water Use Classification of Landscape Species, or

Google WUCOLS IV

# Questions?

# Thank You!