Project Title:	UCCE Statewide Processing Tomato Variety Evaluation Trials, 2009
Project Leader:	Scott Stoddard
	Farm Advisor
	UCCE Merced & Madera Counties
	2145 Wardrobe Rd.
	Merced, CA 95340
	209-385-7403
	csstoddard@ucdavis.edu
Cooperating	
DANR Personnel:	Brenna Aegerter, Farm Advisor, San Joaquin County
	Diane Barrett, Food Science & Technology CE Specialist, UCD
	Tim Hartz, Vegetable Crops CE Specialist, UCD
	Michelle Le Strange, Farm Advisor, Tulare & Kings Counties
	Gene Miyao, Farm Advisor, Yolo, Solano, & Sacramento Counties
	Jan Mickler, Farm Advisor, Stanislaus County
	Joe Nunez, Farm Advisor, Kern County
	Tom Turini, Farm Advisor, Fresno County

Summary:

UCCE farm advisors conducted seven mid-maturity tests in 2009, however only 5 locations were harvested. This year, there were no early maturity varieties submitted, a decision that was made by the processors because of a lack of suitable new entries. Seed companies submitted 16 replicated and 14 observation entries for the mid maturity trial. Spring weather was warm and dry across most locations, and all the trials with the exception of the late-planted Fresno location (Fresno #2) had no significant stand establishment problems because of weather or pests. Insect pest pressure was generally low this season, but some of the locations were impacted by high powdery mildew pressure again in 2009, similar to what occurred last year. The Stanislaus County and Merced County trials were accidentally harvested early and no yield data were measured, though fruit were sampled at Stanislaus for PTAB analysis. This year, all locations utilized transplants and drip irrigation.

The mid maturity observational trial yielded well in all locations except Fresno #2, where stand establishment difficulties, virus diseases, and powdery mildew reduced yields to 15 to 40 tons per acre. When test locations were combined, significant differences in yield were found between varieties, with N6385 (Nunhems), H 5508, H 5608, UG 19406 (United Genetics), and BQ 205 (Woodbridge Seeds) having statistically better overall yields as compared to the other entries. No differences were found between °Brix and color between varieties, which averaged 5.2% and 24.1, respectively. Fruit pH, which in general appears to be increasing over time across all varieties, ranged from 4.35 for UG 19406 to 4.56 for BOS 8800 and BQ 172. In the replicated mid-maturity trial, best yields occurred with H 8504, CXD 255 (Campbells), HM 7883 (Harris Moran), PX 650 (Seminis) and PX 002 (Seminis); HM 7883 also had greater Brix than many other varieties, at 5.3. Significant differences were also seen for color and pH. Similar to the early maturity trial, pH was elevated, averaging 4.46.

Objectives:

The major objective is to conduct processing tomato variety field tests that evaluate fruit yield, Brix, color, and pH in replicated plots in various statewide locations of early commercial release lines. The data are combined from all test locations to analyze variety adaptability under a wide range of growing

conditions. These tests are designed and conducted with input from seed companies, processors, and other allied industry and are intended to generate unbiased, third-party information to assist in making variety choice decisions.

Procedures:

Seven (7) mid-maturity tests were conducted in 2009. Participating counties and Farm Advisors are shown in Table 1. Variety entries and their disease resistances are listed in Table 2. No early-maturity trial was conducted this year because of a lack of entries. Variety selections were made in the fall of 2008 based on input from tomato processors. Changes and/or additions were made by the seed companies based on seed availability.

Test locations were transplanted from late March (Kern Co) through May 22 (Fresno #2). New varieties were usually screened one of more years in non-replicated observational trials before being selected for testing in the replicated trials. Tests were primarily conducted in commercial production fields with grower cooperators (the Fresno trials were located at the UC West Side Research and Extension Center (WSREC) near Five Points).

Each variety was planted in a one-bed by 100-foot long plot. Plot design was a randomized complete block with four replications for the replicated trial. The observational trial consisted of one non-replicated plot directly adjacent to the replicated trial. The Farm Advisor organized transplanting at the same time that the rest of the field was planted. All cultural operations, with the exception of planting and harvest, were done by the grower cooperator using the same equipment and techniques as the rest of the field. All test locations used transplants, and five locations this year were drip irrigated (Merced, Stanislaus, San Joaquin, Kern, and Yolo). A field day or arrangements for interested persons to visit the plots occurred at most locations. Farm Advisors were also responsible for taking soil samples and documenting growth and development.

Shortly before or during harvest, fruit samples were collected from all plots and submitted to an area PTAB station for soluble solids (reported as °Brix, an estimate of the soluble solids percentage using a refractometer), color (LED color), and pH determinations. These samples were hand picked ripe fruit directly off the plants or the harvester. The tomatoes in each plot were harvested with commercial harvest equipment, conveyed to a GT wagon equipped with weigh cells, and weighed before going to the trailers for processing.

Data were analyzed using analysis of variance procedures with SAS, both for each individual location and combining locations. In the combined analysis, the block effect was nested within each county. Significant difference tests were performed using Fisher's protected LSD at the 5% level. Stanislaus County had no yield data for the over-location analysis, however, PTAB data were included. Merced yield and PTAB results were not available. Occasional missing plots occurred in the other trial locations, resulting in an unbalanced design and variable LSD values depending on what was being compared.

Results:

Results are presented in the following order and include combined county, yield, °Brix, color, and pH for each trial: mid-maturity observational (Table 3 a - f), and mid-maturity replicated (Table 4 a - e).

Mid observational. Mid-maturity observational results combining all locations are shown in Table 3a, and individual counties in Tables 3 b – e. Stanislaus County PTAB data are shown, but not yields. Because of missing plots at some locations, multiple LSD values were calculated to compare varieties and are shown below each table as appropriate. When all counties were combined, significant differences were found among varieties only for yield and pH (Table 3a). Even with relatively high variability (CV

14.0%), significantly best yields occurred with Nunhems N 6385, Heinz H 5508, H 5608, United Genetics UG 19406, and Woodbridge Seeds BQ 205, which all yielded more than 50 tons per acre. °Brix and color were slightly better this year than 2008, at 5.2 and 24.1, but there were no significant differences between varieties when location data were combined. Fruit pH was again elevated, and ranged from 4.35 to 4.56 (Table 4e). Because there was no replication in this test, variety by location interactions could not be performed.

A significant negative relationship was observed this year between Brix and yield for the observation lines (Figure 1): soluble solids decreased as yield increased, as would be expected.

Mid replicated. Mid-maturity replicated variety results combining all locations are shown in Table 4a, and individual counties in Tables 4 b - e. Stanislaus PTAB data were collected, but not yields.

Using combined data, significant differences were found for all parameters measured, though Fresno #1 trial did not have significant differences for Brix or pH. Averaged across all locations, significantly best yields occurred with H8504, CXD 255, HM 7883, PX 650, and PX 002 at \geq 50 tons per acre. Yields were much better in the Yolo trial than the other locations, averaging 64 tons/A.

Significant differences were observed for Brix in the combined data and individual location data with the exception of Fresno #1, but overall there was little spread between the variety with the best average soluble solids (HM 6898, 5.5) and the least (CXD 282, 4.9). HM 7883 had both yield and °Brix that were in the top 5. Unlike for the observation trial, there was very little relationship between average yield and fruit soluble solids (Figure 2).

H4007 and PX 002 had the best fruit color with LED ratings of 22.5 and 23.3, respectively (Table 4 d). Fruit pH ranged from 4.38 to 4.56 (Table 4e), with HM 6898, H8504, H9780, and AB2 and having significantly lowest pH. These varieties also had better pH results in 2008.

Significant variety by location interactions occurred for yield, °Brix, color, and pH. This indicates that certain varieties performed differently at different locations. AB2, for example, yielded much better in Yolo compared to the other locations.

Acknowledgements:

Many thanks to CTRI and participating processors and seed companies for their continued support for this project. The cooperation from PTAB and support of the processors is also greatly appreciated. Many thanks to Gail Nishimoto for her help with the statistical analyses. And lastly, this project would not be possible without the many excellent grower cooperators who were involved with this project.

Advisor	Trial
Gene Miyao, Yolo Co.	Transplant April 24, drip irrigation. Good stand, good vine growth, <i>Verticillium</i> wilt pressure, double row. Cooperator: JH Meek and Sons. Harvest Aug 28.
Brenna Aegerter, San Joaquin County	Transplant May 8, drip irrigation. No stand problems this year. Cooperator: Hal Robertson. Harvest Sept 30.
Jan Mickler, Stanislaus County	Transplant May 15, drip irrigation. Single row. Cooperator: Leroy Deldon. Fruit samples September 20, no harvest.
Scott Stoddard, Merced County	Transplant May 11, drip irrigation. Single row. Good stand, good vine growth. Cooperator: A-Bar Ranch. No harvest, no PTAB samples.
Michelle Le Strange, Tom Turini Fresno County 1	Transplant May 1, sprinkler irrigation to set plants, drip thereafter. Single row, 66" beds. Powdery mildew pressure in August. WSREC. Harvest Sept 1.
Michelle Le Strange, Tom Turini Fresno County 2	Transplant May 22, sprinkler irrigation to set plants, drip thereafter. Establishment and disease and insect problems, especially powdery mildew. Single row 66" beds. WSREC. Harvest Sept 22.
Joe Nunez, Kern County	Transplant March 31, single row, drip irrigation. Cooperator: Stenderup Farms. Harvest Aug 10. Not all observation lines planted because of lack of space.

 Table 1. 2009 UCCE mid-maturity processing tomato variety trial locations.

Table 2. 2009 UCCE Processing Tomato Regional Variety Trial

TRIAL	COMPANY	VAR	my CODE	UC code	Disease Resistance	days to maturity	processed use	Brix	std compared	vine size	fruit shape	trial vears
Mid	AB Seeds	AB 2	1	868	VFFP	120	Multiuse	high	3155	med	sa	06, 07, 08,09
Replicated	AB Seeds	AB3 (DRI0303	2	971	VFFNP	121	Multiuse	high		med		09
•	Campbell's Seeds	CXD 255	3	969	VFFNP	125	Multiuse	5	P849	med	sq	09
	Campbell's Seeds	CXD 282	4	976	VFFFNP	125	Multiuse	5.4		med	sq	09
	Heinz Seed	H 2601	5	865	VFFNP	122	pear	5	STD	lg	pear	06, 07, 08,09
	Heinz Seed	H 4007	6	966	VFFNP	120	MultiUse	5.1	H9780	med/lg	blocky	08, 09
	Heinz Seed	H 8504	7	972	VFFNP	130	paste	5.2	H9780	lg	obal	09
	Heinz Seed	H 9780	8	866	VFFNP	138	MultiUse	5.5	STD	lg	blocky	06, 07, 08,09
	Harris Moran	HM 6898	9	967	VFFNP	122	MultiUse	high	AB2	lg	round	08, 09
	Harris Moran	HM 6903	10	977	VFFNP	125	Multiuse	high	AB2	med/lg	sq	09
	Harris Moran	HM 7883	11	978	VFNP	125	Multiuse	high	AB2	lg	sq	09
	Harris Moran	HMX 7885	12	973	VFFNBsp	122	Pear	med/high	2601	lg	pear	08, 09
	Nunhems USA	N 6390	13	975	VFFNP	130	Multiuse	v high	H 9665	lg	blocky	09
	Seminis	PX 002	14	979	VFFNSW	125	Multiuse	high	H8004	med/lg	sq/blocky	09
	Seminis	PX 650	15	980	VFFNP	135	Multiuse	high	H9780	med/lg	sq/blocky	09
	Nunhems USA	SUN 6366	16	919	VFFNP	118	Multiuse	high	AB2	med	sq/blocky	07,08,09 early trial
Mid	Orsetti Seed	BOS 8800	017	981	VFFN	122	paste/dice	5.8	AB2	med-la	blocky	09
OBSERVED	Woodbridge Seeds	BQ 163	018	982	VFFNP	118	multiuse	5.5	H5004	small	blocky	09
	Woodbridge Seeds	BQ 172	019	983	VFFNP	125	multiuse	5.3	H2401	lg	blocky	09
	Woodbridge Seeds	BQ 205	020	984	VFFNP	118	multiuse	5.8	SUN6366	lg	blocky	09
	Campbell's Seed	CXD 269	o21	970	VFFNBsp	124	multiuse	5.4	AB2	med	blocky	08, 09
	AB Seeds	DRI 0309	022	985	VFFNPSW	119	multiuse	high		med		09
	Heinz Seed	5508	023	986	VFFNSW	128	paste	4.8	H9780	med/lg	oval	09
	Heinz Seed	5608	024	987	VFFNPSW	128	multiuse	5.0	H9780	lg	blocky	09
	Hytec Seeds	HT1059	o25	988	VF TYLC	120	paste	5		med	sq round	08, 09
	Nunhems	N 6385	026	974	VFFNBsp SW	125	Viscosity	med	H9665	med/lg	sq round	08, 09
	Nunhems	N 6393	027	989	VFFN	124	multiuse	high	H9557	lg	sq blocky	09
	Nunhems	N 6394	028	990	VFFNPSW	126	multiuse	high	AB8058	lg	sq blocky	09
	United Genetics	UG 4305	029	960	VFFN	122	MultiUse	high			sq round	07, 08, 09
	United Genetics	UG 19406	030	961	VFFN Bsp			high			sq round	09

Check with seed company to confirm disease resistance.

V = Verticillium Wilt race 1 FFF = Fusarium Wilt races 1 & 2 & 3

N = Root knot nematode

Bsp, P = Bacterial speck race 0

SW = Spotted Wilt

TYLC = tomato yellow leaf curl virus

Figure 1. Relationship between tomato fruit yield and soluble solids for the varieties in the observation trial. Each point is the mean of 5 or 6 locations.

Figure 2. Relationship between tomato fruit yield and soluble solids for the varieties in the replicated trial. Each point is the mean of 20 - 24 data points.

Variety	Yield tons/acre (5 locations)						Brix % 6 loc	Color 6 loc	pH 6 loc	
974 N 6385	58.5 (01)	А					5.2 (11)	24.0 (05)	4.43 (05)	
986 5508	57.7 (02)	A	В				4.7 (14)	24.0 (05)	4.39 (02)	
987 5608* ¹	54.6 (03)	A	вс				5.0 (13)	23.1 (01)	4.44 (06)	
961 UG 19406* <i>1</i>	51.4 (04)	A	вс	D			5.3 (06)	24.3 (09)	4.35 (01)	
984 BQ 205* ¹	49.9 (05)	A	вс	D	Е		5.2 (07)	24.7 (12)	4.41 (04)	
989 N 6393	49.8 (06)		вс	D	Е		5.2 (08)	24.3 (10)	4.46 (08)	
985 DRI 0309	49.7 (07)	I	вс	D	Е		5.2 (08)	24.2 (08)	4.41 (03)	
990 N 6394	48.7 (08)		С	D	Е	F	5.3 (01)	24.5 (11)	4.48 (10)	
982 BQ 163	46.3 (09)		С	D	Е	F	5.3 (01)	23.5 (03)	4.49 (11)	
970 CXD 269	44.9 (10)			D	Е	F	5.3 (01)	24.0 (05)	4.47 (09)	
988 HT1059** <i>1</i>	44.1 (11)			D	Е	F	5.0 (12)	23.7 (04)	4.50 (12)	
960 UG 4305* ¹	42.6 (12)				Е	F	5.2 (10)	24.7 (12)	4.45 (07)	
981 BOS 8800	41.5 (13)				Е	F	5.3 (05)	26.0 (14)	4.56 (13)	
983 BQ 172* ¹	40.2 (14)					F	5.3 (04)	23.3 (02)	4.56 (14)	
 Yield mean adjusted for 1 missing plot ** Yield mean adjusted for 2 missing plots Stanislaus did not have yield data ¹ Brix, Color, pH mean adjusted for 1 missing plot 										
Mean % C.V. LSD @ 0.05	48.3 14.0						5.2 6.9 NS	24.1 6.7 NS	4.45 1.2	
Yield: to compare 97 LSD @ 0.05 Yield: to compare 97 960, 983 (4 locations LSD @ 0.05	LSD @ 0.05 NS NS Yield: to compare 974, 986, 989, 985, 990, 982, 970, 981 with each other (5 locations per mean) LSD @ 0.05 8.61 Yield: to compare 974, 986, 989, 985, 990, 982, 970, 981 (5 locations per mean) with 987, 961, 984, 960, 983 (4 locations per mean) with 987, 961, 984, 986, 989, 985, 990, 982, 970, 981 (5 locations per mean)									
Yield: to compare 97	4, 986, 989, 985, 9	90, 9	82, 9	970	, 98	81 (5 locations per l	mean) with 9	88 (mean	
composed of 3 locat	ions per mean)									
LSD @ 0.05	9.94	02 /4	1	- 4: -			r maan) with an	ah athar		
I SD @ 0.05	7, 907, 984, 900, 9 9 63	53 (4	100	atic	ons	pe	r mean) with eac	ch other		
Yield: to compare 98 locations per mean) LSD @ 0.05	7, 961, 984, 960, 9 10.40	83 (4	loc	atic	ons	pe	r mean) with 988	8 (mean com _l	bosed of 3	
<i>pH: to compare 986,</i> LSD @ 0.05	985, 974, 989, 970 0.063	, 990	, 98	2, 9	81	(6	locations per me	ean) with eac	h other	
pH: to compare 986, 988, 983 (5 locations	985, 974, 989, 970 per mean)	, 990	, 98	2, 9	81	(6)	locations per me	ean) with 961	984, 987, 960,	
LSD @ 0.05	0.066						· •			
pH: to compare 961,	984, 987, 960, 988 0 060	, 983	5 (5 I	oca	itio	ns	per mean) with	each other		
Numbers in parenthese	es (x) represent re	lative	e ran	kin	a w	vithi	n a column.			
LSD = Least significant	difference at the 9	5% c	onfi	den	ce	leve	el. Means followe	ed by the sam	e letter are not	

Table 3a	2009 Processing	tomato mid-maturity	y observational	combined anal	ysis.

significantly different. NS = not significant. CV = coefficient of variation (%), a measure of the variability in the experiment. Variety x location LSD = LSD when comparing varieties across locations.

Variety	Yield tons/acre						Fresno #1	Fresno #2	Kern	San Joaquin	Stan- islaus	Yolo
974 N 6385	58.5 A						58.4	30.8	67.3	64.3	1010.00	71.5
986 5508	57.7 A	в					58.0	39.9	53.8	71.9		65.1
987 5608*	54.6 A	В	С				50.0	34.6		59.9		70.4
961 UG 19406*	51.4 A	в	С	D			35.9	27.6		69.0		69.6
984 BQ 205*	49.9 A	В	С	D	Е		40.5	23.2		63.1		69.4
989 N 6393	49.8	В	С	D	Е		47.7	16.6	56.9	62.8		65.0
985 DRI 0309	49.7	в	С	D	Е		39.2	23.9	58.5	53.5		73.4
990 N 6394	48.7		С	D	Е	F	49.9	35.3	34.0	52.6		71.6
982 BQ 163	46.3		С	D	Е	F	36.6	20.7	55.2	56.2		62.6
970 CXD 269	44.9			D	Е	F	43.1	20.5	53.0	44.3		63.6
988 HT1059**	44.1			D	Е	F	45.7	24.0				52.7
960 UG 4305*	42.6				Е	F	38.6	20.0		44.8		63.6
981 BOS 8800	41.5				Е	F	44.4	18.3	46.2	35.9		63.0
983 BQ 172*	40.2					F	40.1	15.4		41.4		60.3
* Yield mean adj	usted for 1 mis	sing	g pl	ot								
** Yield mean adj	usted for 2 mi t have vield da	ssin ofa	g p	lots	5							
	40.0	na										
WEAN % C V	48.3 14 0											
To compare 974,	986, 989, 985,	990,	98	2, 9	70,	981	l with each o	ther (means	compose	d of 5 locatio	ons)	
LSD @ 0.05	8.61											
To compare 974, (means compose LSD @ 0.05	986, 989, 985, d of 4 location 9.13	990, s)	98	2, 9	70,	981	l (means cor	nposed of 5 l	ocations)	with 987, 96	i1, 984, 960,	983
To compare 974, composed of 3 lo	986, 989, 985, s cations)	990,	98	2, 9	70,	981	l (means con	nposed of 5 l	ocations)	with 988 (m	ean	
LSD @ 0.05	9.94											
To compare 987, LSD @ 0.05	961, 984, 960, 9.63	983	(me	ean	s co	omp	oosed of 4 lo	cations) with	each oth	er		
To compare 987,	961, 984, 960,	983	(me	ean	s co	omp	oosed of 4 lo	cations) with	988 (mea	an composed	l of 3 locati	ons)

Table 3b. 2009 MID SEASON OBSERVATIONAL COMBINED ANALYSIS: YIELD

LSD @ 0.05 10.40 Observation varieties were not replicated so the statistical analysis could be performed on the combined data only.

Table Sc. 2009 MID	SEASU	N OBSERVAL	UNAL COM	DINED AN	ALTSIS: D	КІЛ	
	Brix				San		
Variety	%	Fresno #1	Fresno #2	Kern	Joaquin	Stanislaus	Yolo
990 N 6394	5.3	5.2	5.9	5.6	5.1	4.7	5.4
982 BQ 163	5.3	5.5	5.6	4.9	5.2	5.0	5.7
970 CXD 269	5.3	5.2	5.4	5.6	5.4	4.6	5.7
983 BQ 172*	5.3	5.4	5.3		5.4	4.8	5.5
981 BOS 8800	5.3	5.6	5.0	5.5	5.0	5.0	5.7
961 UG 19406*	5.3	5.5	5.3		5.1	4.9	5.4
984 BQ 205*	5.2	5.3	5.6		5.3	5.3	4.5
989 N 6393	5.2	5.1	5.5	5.8	5.1	4.7	5.1
985 DRI 0309	5.2	5.6	4.4	5.8	5.4	5.0	5.1
960 UG 4305*	5.2	5.4	5.2		5.2	4.5	5.4
974 N 6385	5.2	6.5	5.2	4.9	4.5	4.7	5.1
988 HT1059*	5.0	5.4	5.4		4.3	5.1	4.7
987 5608*	5.0	5.4	5.0		4.8	4.8	4.8
986 5508	4.7	5.6	4.5	4.9	4.3	4.4	4.6
* Mean adjusted for a	1 missing	plot					
MEAN	5.2						
% C.V.	6.9						
LSD @ 0.05	NS						

Table 3c. 2009 MID SEASON OBSERVATIONAL COMBINED ANALYSIS: BRIX

Not all varieties were planted at the Kern location.

Table 3d. 2009 MID SEASON OBSERVATIONAL COMBINED ANALYSIS: COLOR											
					San						
Variety	LED Color	Fresno #1	Fresno #2	Kern	Joaquin	Stanislaus	Yolo				
987 5608*	23.1	24.0	24.0		21.0	21.0	25.0				
983 BQ 172*	23.3	27.0	23.0		20.0	23.0	23.0				
982 BQ 163	23.5	25.0	27.0	24.0	21.0	22.0	22.0				
988 HT1059*	23.7	24.0	25.0		23.0	23.0	23.0				
986 5508	24.0	24.0	27.0	25.0	22.0	23.0	23.0				
974 N 6385	24.0	26.0	27.0	24.0	22.0	22.0	23.0				
970 CXD 269	24.0	24.0	26.0	26.0	21.0	24.0	23.0				
985 DRI 0309	24.2	24.0	27.0	24.0	22.0	24.0	24.0				
961 UG 19406*	24.3	25.0	30.0		21.0	23.0	22.0				
989 N 6393	24.3	25.0	29.0	25.0	22.0	22.0	23.0				
990 N 6394	24.5	22.0	34.0	24.0	21.0	23.0	23.0				
984 BQ 205*	24.7	26.0	27.0		22.0	24.0	24.0				
960 UG 4305*	24.7	25.0	29.0		22.0	23.0	24.0				
981 BOS 8800	26.0	24.0	33.0	27.0	23.0	26.0	23.0				
* Mean adjusted fe	or 1 missing p	lot									
MEAN	24.1										
% C.V.	6.7										
LSD @ 0.05	NS										

Not all varieties were included in the Kern location.

Observation varieties were not replicated so the statistical analysis could be performed on the combined data only.

Tuble del 2000 Mile	OLAGO								<u></u>	••		
Variety	нα						Fresno #1	Fresno #2	Kern	San Joaquin	Stan- islaus	Yolo
	4.05.4						4.00	4.4.4		4.07	4.04	4.00
961 UG 19406"	4.35 A						4.33	4.44		4.37	4.31	4.23
986 5508	4.39 A	В					4.44	4.44	4.38	4.41	4.34	4.32
985 DRI 0309	4.41	В	С				4.47	4.36	4.42	4.45	4.40	4.36
984 BQ 205*	4.41	В	С				4.33	4.39		4.47	4.46	4.35
974 N 6385	4.43	В	С	D			4.44	4.41	4.48	4.55	4.27	4.43
987 5608*	4.44	В	С	D	Е		4.38	4.47		4.52	4.41	4.37
960 UG 4305*	4.45		С	D	Е		4.41	4.44		4.52	4.38	4.47
989 N 6393	4.46		С	D	Е		4.37	4.44	4.55	4.52	4.44	4.46
970 CXD 269	4.47		С	D	Е		4.53	4.45	4.52	4.44	4.49	4.40
990 N 6394	4.48			D	Е		4.42	4.36	4.57	4.58	4.49	4.46
982 BQ 163	4.49			D	Е		4.51	4.43	4.59	4.48	4.54	4.36
988 HT1059*	4.50				Е		4.53	4.40		4.55	4.45	4.51
981 BOS 8800	4.56					F	4.59	4.53	4.59	4.56	4.56	4.55
983 BQ 172*	4.56					F	4.52	4.58		4.58	4.53	4.56
* Mean adjusted for	1 missing	ı pla	ot									
MEAN	4.45											
% C.V.	1.2											

Table 3e. 2009 MID SEASON OBSERVATIONAL COMBINED ANALYSIS: pH

To compare 986, 985, 974, 989, 970, 990, 982, 981 (means composed of 6 locations) with each other LSD @ 0.05 0.063

To compare 986, 985, 974, 989, 970, 990, 982, 981 (means composed of 6 locations) with 961, 984, 987, 960, 988, 983 (means composed of 5 locations)

LSD @ 0.05 0.066

To compare 961, 984, 987, 960, 988, 983 (means composed of 5 locations) with each other LSD @ 0.05 0.069

Observation varieties were not replicated so the statistical analysis could be performed on the combined data only.

Yield tons/acre	Brix %	Color	рН
5 locations	6 locations	6 locations	6 locations
52.4 (01) A	5.0 (15)	23.5 (05)	4.38 (02)
52.3 (02) A B	5.1 (13)	24.0 (12)	4.45 (07)
51.3 (03) A B C	5.3 (04)	24.0 (13)	4.53 (15)
51.1 (04) A B C D	5.2 (07)	24.9 (15)	4.49 (12)
49.8 (05) A B C D E	5.1 (12)	23.3 (02)	4.46 (08)
49.5 (06) B C D E	5.0 (14)	22.5 (01)	4.51 (13)
48.5 (07) C D E F	5.3 (06)	23.7 (08)	4.51 (14)
48.3 (08) DEF	5.1 (11)	23.8 (09)	4.56 (16)
47.9 (09) EFG	5.4 (02)	23.5 (06)	4.44 (05)
47.9 (10) EFG	5.2 (08)	24.1 (14)	4.40 (03)
47.0 (11) EFG	5.5 (01)	23.3 (03)	4.38 (01)
46.2 (12) F G	5.3 (05)	23.8 (10)	4.42 (04)
45.2 (13) G	5.4 (02)	25.0 (16)	4.45 (06)
41.7 (14) H	5.2 (09)	23.9 (11)	4.48 (11)
41.3 (15) H	4.9 (16)	23.4 (04)	4.47 (09)
34.1 (16)	I 5.1 (10)	23.6 (07)	4.48 (10)
47.2	5.2	23.8	4.46
9.8	6.0	5.7	1.3
2.88	0.18	0.77	0.033
ot 973 and 976 with each other			
2.88	0.18	0.77	0.033
ot 973 with 976			
3.06	0.19	0.81	0.035
pt 976 with 973			
2.92	0.18	0.78	0.033
973			
3.09	0.19	0.82	0.035
ration			
ans except Yolo 973 with each othe	r (4 plots/mean)		
6.45	0.43	1.90	0.081
6.97	0.47	2.05	0.087
	Yield tons/acre 5 locations 52.4 (01) A 52.3 (02) A B 51.3 (03) A B C 51.1 (04) A B C D 49.8 (05) A B C D E 49.5 (06) B C D E 48.5 (07) C D E F 48.5 (07) C D E F 48.5 (07) C D E F 48.3 (08) D E F 47.9 (10) E F G 47.9 (10) E F G 45.2 (13) G 41.7 (14) H 41.3 (15) H 34.1 (16)	Yield tons/acre Brix % 5 locations 6 locations 52.4 (01) A 5.0 (15) 52.3 (02) A B 5.0 (15) 52.3 (02) A B 5.1 (13) 51.3 (03) A B C 5.3 (04) 51.1 (04) A B C D 5.2 (07) 49.8 (05) A B C D E 5.1 (12) 49.5 (06) B C D E 5.0 (14) 48.5 (07) C D E F 5.3 (06) 48.3 (08) D E F 5.1 (11) 47.9 (09) E F G 5.2 (08) 47.0 (11) E F G 5.2 (08) 47.0 (11) E F G 5.3 (05) 45.2 (13) G 5.4 (02) 41.7 (14) H H 5.2 (09) 41.3 (15) H 4.9 (16) 34.1 (16) I I 5.1 (10) 47.2 5.2 9.8 6.0 2.88 0.18 $ot 973$ with 976 3.06 0.19 3.06 0.19 6.97 0.47	Yield tons/acre Brix % Color 5 locations 6 locations 6 locations 52.4 (01) A 5.0 (15) 23.5 (05) 52.3 (02) A B 5.1 (13) 24.0 (12) 51.3 (03) A B C 5.3 (04) 24.0 (13) 51.1 (04) A B C D 5.2 (07) 24.9 (15) 49.8 (05) A B C D E 5.1 (12) 23.3 (02) 49.5 (06) B C D E 5.0 (14) 22.5 (01) 48.5 (07) C D E F 5.3 (06) 23.7 (08) 48.3 (08) D E F G 5.4 (02) 23.5 (06) 47.9 (09) E F G 5.2 (08) 24.1 (14) 47.0 (11) E F G 5.3 (05) 23.8 (10) 45.2 (13) G 5.4 (02) 25.0 (16) 41.7 (14) H 5.2 (09) 23.9 (11) 41.3 (15) H 4.9 (16) 23.4 (04) 34.1 (16) <i (10)<="" 5.1="" td=""> 23.6 (07) 47.2 5.2 23.8 9.8 6.0 5.7 2.88 0.18 0.77 47.7 5.2 23.8 9.8 6.0 <</i>

Table 4a. 2009 Prcessing tomato mid-maturity replicated combined analysis.

LSD = Least significant difference at the 95% confidence level. Means followed by the same letter are not significantly different.

NS = not significant.

CV = coefficient of variation (%), a measure of the variability in the experiment.

Variety x location LSD = LSD when comparing varieties across locations.

				_	_		Stanislaus
Variaty	Yield tons/acre	Yolo	San	Fresno # 1	Fresno # 2	Kern	(No Yield Data)
		00.0		π	# 2		Dataj
972 H 8504	52.4 A	63.3	65.6	47.8	21.9	63.4	
969 CXD 255	52.3 A B	76.5	57.8	47.1	21.0	59.4	
978 HM 7883	51.3 A B C	63.7	57.8	44.5	27.5	63.2	
980 PX 650	51.1 A B C D	70.5	55.7	43.1	23.7	62.7	
979 PX 002	49.8 A B C D E	77.2	46.1	44.5	28.7	52.3	
966 H 4007	49.5 BCDE	65.4	60.3	40.5	28.6	52.8	
919 SUN 6366	48.5 CDEF	69.7	53.0	46.8	19.8	53.1	
973 HMX 7885 **	48.3 DEF	57.5	57.7	46.0	19.6	60.7	
971 AB3 (DRI0303)	47.9 E F G	72.5	54.5	40.2	17.8	54.7	
866 H 9780	47.9 E F G	60.1	63.6	41.9	17.0	56.6	
967 HM 6898	47.0 E F G	53.5	58.8	43.3	25.3	54.2	
868 AB 2	46.2 F G	77.8	50.4	43.7	16.7	42.6	
975 N 6390	45.2 G	68.2	55.4	36.4	14.3	51.5	
865 H 2601	41.7 н	52.1	49.1	35.8	15.3	56.1	
976 CXD 282 *	41.3 н		51.9	44.2	20.8	48.3	
977 HM 6903	34.1	42.7	41.6	32.4	16.6	37.0	
* Missing 4 plots (Yolo)							
** Missing 1 plot (Yolo)							
MEAN	47.2	64.8	54.9	42.4	20.9	54.3	
CV	9.8	4.9	5.2	7.8	19.3	14.3	
LSD @ 0.05	2.88	4.55	4.10	4.72	5.747	11.066	
To compare all varieties exce	ept 973 and 976 with each other (20	plots/i	mean)				
LSD @ 0.05	2.88						
To compare all varieties exce	ept 973 (20 plots/mean) with 976 (10	6 plots∕	(mean)				
LSD @ 0.05	3.06	-					
To compare all varieties exce	ept 976 (20 plots/mean) with 973 (1) plots/	(mean)				
LSD @ 0.05	2.92		,				
To compare variety 976 (16 p	lots/mean) with 973 (19 plots/mean	1)					
LSD @ 0.05	3.09						
Variety X Location mean sep	aration		• • •				
Variety X Location LSD 0.05	eans except Yolo 973 with each off	ier (4 p	lots/mean,)			
Variety X Location LSD 0.05	/mean) with all other interaction m ۵ ۵۶	eans (4	‡ plots/mea	an)			
Valiety A Location LOD 0.00	0.97						

Table 4b. 2009 MID SEASON REPLICATED COMBINED ANALYSIS: TONS

Table 4C. 2009 WID SEASC		D ANA	LI 313; B				
	Brix %	Vala	San	Chamialarus	Fresno	Fresno	14
Variety	6 locations	YOIO	Joaquin	Stanislaus	# 1	# Z	Kern
967 HM 6898	5.5 A	5.9	5.5	5.1	5.4	5.3	5.5
975 N 6390	5.4 А В	5.0	5.4	4.9	5.4	5.8	5.9
971 AB3 (DRI0303)	5.4 А В	4.9	5.2	5.2	5.4	5.8	5.9
978 HM 7883	5.3 A B C	5.3	5.2	4.6	5.8	5.5	5.3
868 AB 2	5.3 A B C D	4.9	5.1	5.3	5.4	5.5	5.7
919 SUN 6366	5.3 A B C D	5.1	5.1	4.8	5.5	5.4	5.9
980 PX 650	5.2 B C D E	5.3	5.4	4.7	5.5	5.4	5.2
866 H 9780	5.2 C D E F	5.4	5.0	4.9	5.6	5.3	5.2
865 H 2601	5.2 C D E F	5.4	5.0	4.8	5.7	4.9	5.4
977 HM 6903	5.1 DEF	4.9	4.9	4.9	5.5	5.2	5.3
973 HMX 7885 **	5.1 E F	5.2	5.0	4.3	5.7	5.4	5.0
979 PX 002	5.1 EFG	4.8	4.9	4.8	5.8	4.9	5.3
969 CXD 255	5.1 F G	5.1	4.9	4.6	5.4	5.2	5.3
966 H 4007	5.0 F G	4.8	4.9	4.5	5.4	5.4	5.3
972 H 8504	5.0 F G	5.2	4.7	4.8	5.5	4.8	5.1
976 CXD 282 *	4.9 G		4.8	4.5	5.3	4.8	5.1
* Missing 4 plots (Yolo)							
** Missing 1 plot (Yolo)							
MEAN	5.2	5.1	5.1	4.8	5.5	5.3	5.4
CV	6.0	7.4	4.3	5.8	5.8	7.1	5.0
LSD @ 0.05	0.18	0.54	0.31	0.39	NS	0.53	0.38
To compare all varieties exce	ept 973 and 976 with each oth	er (24 pl	lots/mean)				
LSD @ 0.05	0.18		,				
To compare all varieties exce	ept 973 (24 plots/mean) with 9	d (20 p	lots/mean)				
LSD @ 0.05	0.19		,				
To compare all varieties exce	ept 976 (24 plots/mean) with 9	73 (23 n	lots/mean)				
LSD @ 0.05	0.18	, o (20 p	ioto, mouri,				
_							
To compare variety 976 (20 p	lots/mean) with 973 (23 plots	/mean)					
LSD @ 0.05	0.19						
Variety X Location mean sep	aration						
To compare all interaction m	eans except Yolo 973 with ea	ch other	r (4 plots/m	ean)			
Variety X Location LSD 0.05	0.43						

Table 4c. 2009 MID SEASON REPLICATED COMBINED ANALYSIS: BRIX

To compare Yolo 973 (3 plots/mean) with all other interaction means (4 plots/mean)Variety X Location LSD 0.050.47

	LED Color		San		Fresno		K
Variety	6 locations	Yolo	Joaquin	Stanislaus	#1	#2	Kern
966 H 4007	22.5 A	21.8	20.3	21.3	23.0	24.3	24.8
979 PX 002	23.3 А В	23.5	21.0	21.8	24.5	24.5	24.5
967 HM 6898	23.3 в	22.5	21.3	23.3	22.5	26.3	24.3
976 CXD 282 *	23.4 в с		20.0	22.8	23.0	26.8	24.5
972 H 8504	23.5 в с	24.3	21.3	22.5	22.3	25.5	25.3
971 AB3 (DRI0303)	23.5 в с	24.3	21.3	22.8	21.8	26.8	24.5
977 HM 6903	23.6 в с	23.5	20.8	23.5	23.0	26.8	24.0
919 SUN 6366	23.7 в с	23.0	21.8	23.5	24.5	25.5	23.8
973 HMX 7885 **	23.8 в с	22.3	22.0	25.0	24.3	24.3	24.8
868 AB 2	23.8 в с	24.3	21.8	23.0	21.8	27.0	25.0
865 H 2601	23.9 в с	24.0	21.8	24.0	21.5	27.8	24.5
969 CXD 255	24.0 в с	24.5	22.0	24.0	21.5	26.5	25.3
978 HM 7883	24.0 в с	22.8	22.3	24.0	24.0	26.0	25.3
866 H 9780	24.1 с р	23.3	21.8	23.3	22.5	28.0	26.0
980 PX 650	24.9 D	e 24.8	23.5	24.8	23.5	27.0	25.8
975 N 6390	25.0	e 25.3	22.8	22.8	22.5	30.3	26.3
* Missing 4 plots (Yolo) ** Missing 1 plot (Yolo)							
MEAN	23.8	23.6	21.6	23.3	22.9	26.4	24.9
CV	5.7	5.3	3.0	5.1	4.1	8.9	4.7
LSD @ 0.05	0.77	1.79	0.93	1.68	1.34	NS	NS
To compare all varieties exc	ept 973 and 976 with	each other	(24 plots/m	ean)			
LSD @ 0.05	0.77			-			
To compare all varieties exc	ept 973 (24 plots/mea	n) with 976	(20 plots/m	nean)			
LSD @ 0.05	0.81						

Table 4d. 2009 MID SEASON REPLICATED COMBINED ANALYSIS: COLOR

 To compare all varieties except 976 (24 plots/mean) with 973 (23 plots/mean)

 LSD @ 0.05
 0.78

To compare variety 976 (20 plots/mean) with 973 (23 plots/mean) LSD @ 0.05 0.82

Variety X Location mean separation

To compare all interaction means except Yolo 973 with each other (4 plots/mean)Variety X Location LSD 0.051.90

To compare Yolo 973 (3 plots/mean) with all other interaction means (4 plots/mean)Variety X Location LSD 0.052.05

Table 4e. 2009 MID SEASON REPLICATED COMBINED ANALYSIS: pH										
Variation	pH		Vala	San	Stanialaura	Fresno # 1	Fresno	Korn		
variety	6 locations		100	Joaquin	Stanislaus	# 1	# 2	Kern		
967 HM 6898	4.38 A		4.33	4.37	4.33	4.47	4.45	4.32		
972 H 8504	4.38 A		4.27	4.32	4.32	4.55	4.51	4.31		
866 H 9780	4.40 A	В	4.32	4.42	4.34	4.50	4.44	4.40		
868 AB 2	4.42	B C	4.34	4.41	4.42	4.55	4.42	4.40		
971 AB3 (DRI0303)	4.44	C D	4.41	4.47	4.43	4.47	4.44	4.41		
975 N 6390	4.45	CDE	4.42	4.48	4.42	4.48	4.47	4.43		
969 CXD 255	4.45	CDE	4.38	4.49	4.41	4.52	4.48	4.44		
979 PX 002	4.46	DEF	4.45	4.49	4.45	4.47	4.45	4.47		
976 CXD 282 *	4.47	E F		4.46	4.46	4.49	4.48	4.48		
977 HM 6903	4.48	EFG	4.44	4.52	4.43	4.55	4.48	4.44		
865 H 2601	4.48	EFGH	4.43	4.48	4.46	4.45	4.59	4.48		
980 PX 650	4.49	FGH	4.43	4.53	4.47	4.48	4.54	4.52		
966 H 4007	4.51	GHI	4.47	4.58	4.51	4.43	4.56	4.51		
919 SUN 6366	4.51	ні	4.45	4.55	4.59	4.43	4.56	4.50		
978 HM 7883	4.53	ΙJ	4.50	4.61	4.55	4.45	4.54	4.56		
973 HMX 7885 **	4.56	J	4.57	4.64	4.55	4.44	4.55	4.61		
* Missing 4 plots (Yolo)										
** Missing 1 plot (Yolo)										
MEAN	4.46		4.41	4.49	4.45	4.48	4.50	4.45		
CV	1.3		0.8	0.8	1.7	1.8	1.4	0.9		
LSD @ 0.05	0.033		0.048	0.050	0.108	NS	0.088	0.056		
To compare all variaties excent 073 and 076 with each other (24 plots/mean)										
LSD @ 0.05	0.033		1013/11104	·')						
To compare all varieties except 973 (24 plots/mean) with 976 (20 plots/mean)										
LSD @ 0.05	0.035	<i>,</i> (,		-						
To compare all varieties except 976 (24 plots/mean) with 973 (23 plots/mean)										

LSD @ 0.05 0.033

To compare variety 976 (20 plots/mean) with 973 (23 plots/mean) LSD @ 0.05 0.035

Variety X Location mean separation

To compare all interaction means except Yolo 973 with each other (4 plots/mean) Variety X Location LSD 0.05 0.081

To compare Yolo 973 (3 plots/mean) with all other interaction means (4 plots/mean) Variety X Location LSD 0.05 0.087