N Contributions from cover crops, composts and soil

William R. Horwath Department Land, Air and Water Resources

University of California Davis

Organic Processing Tomato Production Meeting February 16, 2007 Woodland, CA

Soil Organic Matter

- Cation Ion Exchange capacity
 - 300 to 700 cmol(+)/kg
- Capacity to chelate metals
- Enhance soil physical properties
 - Water Holding capacity
- Source of nutrients
 C/N/S/P = 100/10/1/1
- Positive influence on soil properties

Soil Organic Matter

Labile SOM Active fraction ~2 year old

Resistant SOM ~5 to 100 years old

Stable SOM >1000 years old Light fraction/ Microbial biomass

Resistant Organic Matter

> Very Stable Organic Matter

Contribution of Soil Organic Matter Fractions To available soil nitrogen

Available nutrients

Crop rotation effects

CONVENTIONAL FOUR-YEAR ROTATION

ORGANIC & LOW INPUT ROTATIONS

	Fall	Winter	Spring	Summer	
Year 1	co	ver crop		tomatoes	
Year 2	co	ver crop		safflower	
Year 3	co	ver crop		corn	
Year 4	08	nts/vetch		beans	

K. Klonsky, DARE, UC Davis, 5-99

SUSTAINABLE FARMING SYSTEMS A UC DAVIS PROJECT COMPARING CONVENTIONAL AND LOW-INPUT SYSTEMS INITIATED IN 1989

Soil C and N in Sustainable Agriculture Farming System project under different management.

		Soil %	C	So	il %N	
System	Fall	Fall	Fall	Fall	Fall	
	1988	1996	2000	1996	2000	
Organic	0.83	1.08	1.13	0.117	0.116	
Low-input	0.83	1.03	1.04	0.111	0.107	
Conv-4	0.83	0.90	0.92	0.094	0.095	
Conv-2	0.83	0.84	0.88	0.092	0.094	

Carbon		Nitrogen		
Organic	5.3 t C ha ⁻¹	Organic	462 kg N ha ⁻¹	
Cover crop	3.4 t C ha ⁻¹	Cover crop	273 kg N ha ⁻¹	

Microbial Biomass after 10 years of management at SAFS

Nutrient availability

Fertilizer & Soil N availability and synchrony

Uptake of N of seeded and transplanted tomato

Nitrogen mineralization potential in different Farming Systems

Mineralizable N over growing season

Soil Carbon Change over 10 years

1.5

1.0

0.5

% Soil Carbon

80 to 90% of 10 year accumulation

Organic Low-input Conventional

10

Interaction among soil organic fractions

Fertilizer and Soil N Availability

SAFS

Organic Rotation Uptake of Vetch N

Treatment

Fertilizer and Soil N Availability

Pool

C inputs

N

► Stabilized soil C

Uptake of vetch N compared to fertilizer N

Some problems with nutrient availability

Average yield (ton ha¹) of tomato among different cropping systems.

Cropping System	Marketable Yield	Unmarketable Yield	Total Yield
Conventional	72.2	19.7	91.9
Low-input	72.6	25.4	98.0
Organic	69.0	26.9	95.9

Summary

- With appropriate combination of amendments sufficient amount and synchrony of nutrient delivery can be achieved
 - Limiting factor is the soil can only store finite N
 - Key is to manipulate the size of mineralizable N pool
- Interactions of amendments with other amendments and soil nutrient pools needs further research to fine tune nutrient delivery

