
Is P fertility inherently different in organic production ?

Differences generally minor - arbuscular mycorrhizal fungi may increase soil P availability

Does the normal soil test work for organic soils ?

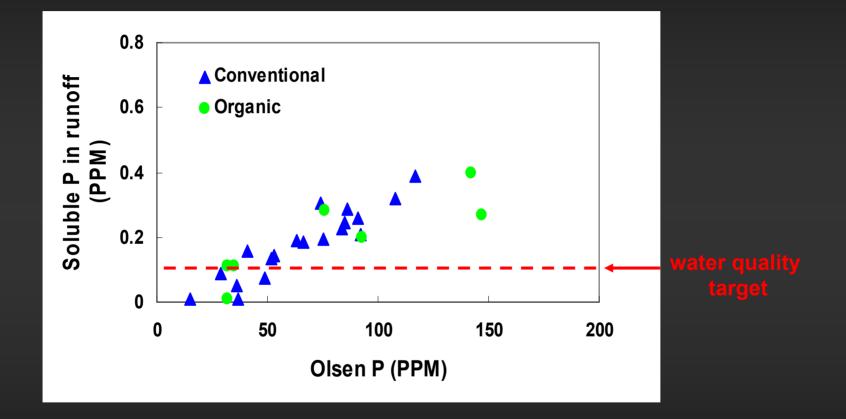
2002-04 study of soils in vegetable rotations :

Soil test threshold for agronomic response is 20-25 PPM Olsen P

- **Organic P sources :**
- Rock phosphate
 - **Bone meal**
- Manures or composts

How available is P in manures and composts ?

Source	% Organic P	% Inorganic P
Feedlot manure	25	75
Composted manure	16	84
Dairy manure	25	75
Poultry litter	10	90
Swine manure	9	91


Studies show that manure or compost P can substitute nearly 1:1 for synthetic fertilizer; the limitation is that it cannot be banded

Organic P management can have environmental consequences :

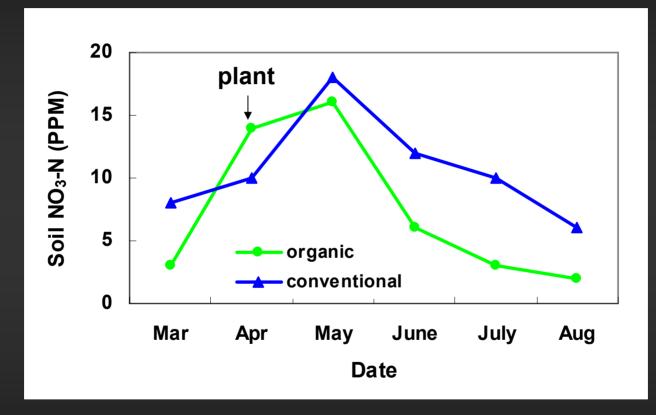
Reliance on manures or composts for N availability often results in excess P - 4 dry tons/acre of compost with 2% P \approx 370 lb P₂O₅ equivalent

Organically managed soils can be an environmental threat :

2002-04 laboratory study of soils in vegetable rotations

Is K fertility inherently different in organic production ?

Soil K availability can be improved by soil building practices
Better soil tilth may improve root density, K uptake
K application useful if soil test is :


- < 150 PPM
- < 2-3% of base cations
- Mg/K ratio > 10-12

- Organic sources of K :
- Compost
- $\checkmark K_2 SO_4$
- \checkmark K-Mag (K₂SO₄ 2MgSO₄) Langbeinite

In-season nutrient monitoring : Is soil NO₃-N analysis useful ?

In-season nutrient monitoring : Is soil NO₃-N analysis useful ?

Soil test interpretation : ✓ > 10 PPM NO₃-N = adequate for current growth ✓ < 10 PPM = ? In-season nutrient monitoring : Is petiole NO₃-N testing useful ?

Petiole NO₃-N concentration at early bloom, SAFS project :

	Petiole NO ₃ -N (PPM)		Organic system
Year	Organic	Conventional	N deficient ?
1994	4,300	14,300	yes
1995	1,000	7,900	yes
1996	7,900	12,400	no
1997	10,900	8,400	no
1998	15,200	10,000	no

Sufficiency threshold:

> 6,000 PPM at early bloom ?

2000 Yolo organic sidedress trial :

• No sidedress vs. 120 lb/acre N with high-N organic fertilizer

	Petiole NO ₃ -N (PPM)		Yield
Treatment	First flower	Full bloom	(tons/acre)
No sidedress N	3,400	100	20
Seabird guano	6,200	4,400	36
Blood meal	5,500	3,400	34
Fish powder	5,900	4,200	35
Sufficiency minimum	6,000 ?	2,500	

In-season nutrient monitoring : Is whole leaf testing useful ?

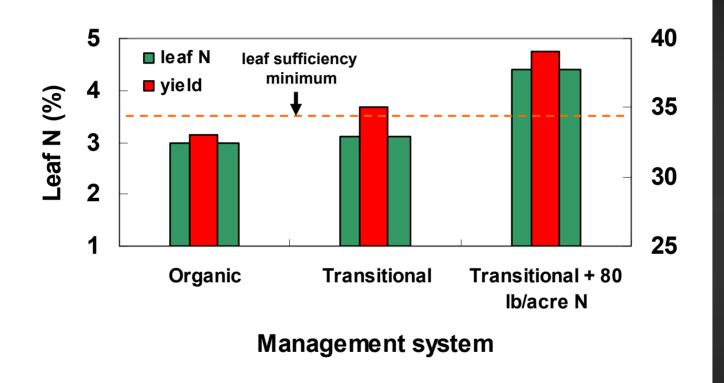
Sufficiency range

Nutrient	First flower	Full bloom
N	4.6* - 5.2	3.5 - 4.5
Р	0.32 - 0.49	0.25 - 0.41
K	2.2 - 3.5	1.6 - 3.1

* Caution: this range may be higher than necessary for N

Interpretation of organic whole leaf samples :

✓ if organic meet these standards, nutrient sufficiency presumed

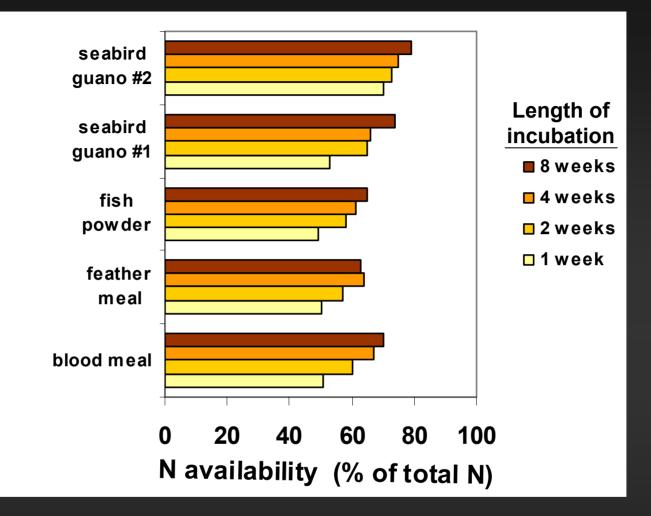

✓ if organic substantially < these standards, deficiency likely</p>

2000 Yolo organic sidedress trial :

• No sidedress vs. 120 lb/acre N with high-N organic fertilizer

	Leaf N (%)		Yield
Treatment	First flower	Full bloom	(tons/acre)
No sidedress N	3.9	2.8	20
Seabird guano	4.3	4.2	36
Blood meal	4.1	4.1	34
Fish powder	4.2	4.3	35
Sufficiency minimum	4.6 ?	3.5	

1999 LTRAS trial, sampled at early fruiting :

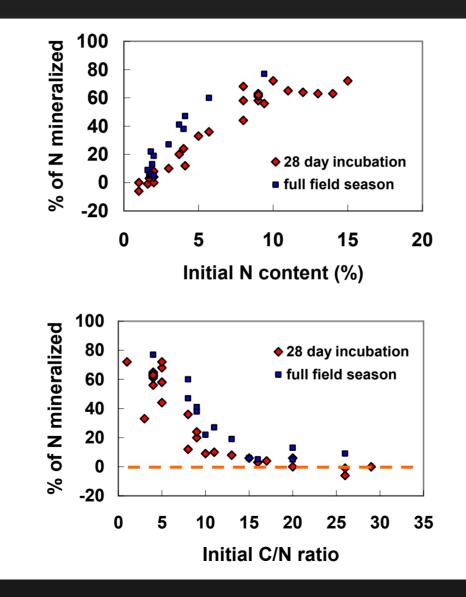


N availability of in-season fertilizers:

UC incubation trial:

- Five high-N materials (> 10% N, C:N ratio < 4)</p>
 - blood meal
 - feather meal
 - fish powder
 - two types of seabird guano
- Incubated in moist soil at 77 °F

Rate of N mineralized determined at 1, 2, 4 and 8 weeks


Quick N mineralization

 animal byproducts have simple organic N forms

All high-N, low C:N ratio products behave similarly

N mineralization rate of 30 organic fertilizers :

2005 data from Oregon State University

