Low biomass cover crops for tomato production

Three trials in 2005-06 :
Compare triticale with wheat
Compare times of chemical termination

Two trials in 2006-07 : ✓ Triticale alone, bed top or broadcast

Approach :
 ✓ Seed late October - early November
 ✓ Roundup application mid February - early March

How much biomass is produced ?

2 - 4 dry tons/acre

Environmental benefits realized ?

Runoff reduced substantially ...

Runoff from storm of Feb 27, 2006

Tomato production benefits realized ?

Water infiltration apparently not enhanced ...

Tomato yield (tons/acre)

Year	Location	Fallow	Triticale
2006	UCD	53	53
	Grower 1	57	58
	Grower 2	39	47

Tomato yield (tons/acre)

Year	Location	Fallow	Triticale	1990. 1990. 1990.
2006	UCD	53	53	
	Grower 1	57	58	1. N.
	Grower 2	39	47	
2007	Grower 1	23	25	
	Grower 2	25	31	
	Average	39	43	

2007 Drip-irrigated processing tomato projects:
✓ Fertigation experiment at UCD
✓ 3 commercial fields in Yolo County

Objectives:

confirm nutrient uptake requirements for high-yield tomatoes
 compare monitoring techniques for nutrient sufficiency

- sufficient N and P
- excessive N and P

AB 2 and Heinz 9780 3 replications per treatment

	Ib/acre			
	Preplant P ₂ O ₅	Preplant N	Fertigated N	
deficient N	70	23	57	
deficient P	0	0	167	
sufficient N and P	70	23	167	
excessive N and P	140	46	247	

Commercial fields :

- All low soil P (< 15 PPM) and low soil K (< 140 PPM)</p>
- Conservative in-season fertigation of 160-175 lb N, < 30 lb K</p>

Every 2 weeks (UCD) or every 3 weeks (commercial fields) :
whole plant sampling for growth and total nutrient uptake
leaf and petiole analysis

	Fruit yield (tons/acre)	Crop nutrient uptake (lb/acre)		
		Ν	Р	K
UCD sufficient N & P	58			
Field 1	45			
Field 2	51			
Field 3	59			

	Fruit yield (tons/acre)	Crop nutrient uptake (Ib/acre)		
		N	Р	К
UCD sufficient N & P	58	210		
Field 1	45	200		
Field 2	51	240		
Field 3	59	250		

	Fruit yield (tons/acre)	Crop nutrient uptake (lb/acre)		
		N	Р	К
UCD sufficient N & P	58	210	34	
Field 1	45	200	25	
Field 2	51	240	27	
Field 3	59	250	34	

	Fruit yield (tons/acre)	Crop nutrient uptake (lb/acre)		
		N	Р	K
UCD sufficient N & P	58	210	34	320
Field 1	45	200	25	160
Field 2	51	240	27	190
Field 3	59	250	34	230

UCD sufficient and excessive N & P treatments

UCD sufficient and excessive N & P treatments

UCD sufficient N & P treatment

Growth stage	Daily crop N uptake (lb/acre)
Transplant – early fruit set	< 1
Early set – full bloom	5
Full bloom – first red fruit	3
First red fruit - harvest	< 2

Implications for N management :

crop N demand is predictable

- not all N needs to come from fertilizer
 - seasonal N rates > 200 lb/acre seldom justified, less needed in high NO₃-N residual fields

N fertigation should be concentrated from early set through full bloom

Implications for P management :

- ✓ soil test threshold ≈ 20-25 PPM Olsen P
- ✓ for buried drip fields soil test the major root zone (6-18" depth)
- with appropriate preplant, in-season fertigation seldom necessary

Implications for K management :

for buried drip fields soil test the major root zone (6-18" depth)
 soil test K threshold hard to pin down

- for soils < 150 PPM likely to require K fertigation
- soils up to 250 PPM may require fertigation
- use tissue analysis to guide K fertigation program

What are we trying to measure with plant analysis ?
'recent nutrient uptake' in petioles

'unassimilated' nutrients (NO₃-N, PO₄-P, K)

overall plant nutrient status in whole leaves

total N, P, K

Does petiole analysis really show 'recent' nutrient uptake ?

2007 Processing tomato monitoring, early fruit set

Conclusion :

most petiole NO₃-N and PO₄-P are already stored in plant cells, and therefore subject to many confounding influences

2007 UCD fertigation trial

Limitations of petiole analysis :

 plants stockpile small amounts of unassimilated nutrients, so petiole concentrations can change rapidly

Excess N treatment :

	Ib/acre		
Growth stage	Total plant N content	Total plant NO ₃ -N content	N uptake/day
Early bloom	28	3	1
Mid fruit set	89	11	4

Whole leaf analysis : Advantages: ✓ Correlates with whole plant nutrient status

2007 UCD fertigation trial

Whole leaf analysis : Advantages:

✓ Correlates with whole plant nutrient status

Changes more slowly than petioles

2007 UCD fertigation trial

Whole leaf analysis : Advantages: ✓ Correlates with whole plant nutrient status ✓ Changes more clowly then noticles

Changes more slowly than petioles

2007 UCD fertigation trial

Excess N treatment :

	Ib/acre			
Growth stage	Total plant N content	N uptake/day	Daily uptake as % of biomass N	
Early bloom	28	1	4	
Mid fruit set	89	4	4	

High leaf N can indicate sufficient biomass N to accommodate 7+ days of crop growth

Comparing petiole and whole leaf analysis :

2007 monitoring :

Comparing petiole and whole leaf analysis :

4,000 Petiole PO₄-P (PPM) UCD (58 tons) Field 1 (45 tons) Field 2 (51 tons) 3,000 Field 3 (59 tons)
 Minimum threshold 2,000 1,000 0 early bloom full bloom **Growth stage** 0.6 UCD (58 tons) 0.5 Field 1 (45 tons) Field 2 (51 tons) Leaf % P 0.4 Field 3 (59 tons) Minimum threshold 0.3 0.2 0.1 0 early bloom full bloom Growth stage

2007 monitoring :

Comparing petiole and whole leaf analysis :

2007 monitoring :

Bottom line on tissue analysis : ✓ current petiole NO₃-N and PO₄-P sufficiency levels are too high

Bottom line on tissue analysis :

current petiole NO₃-N and PO₄-P sufficiency levels are too high
 petiole analysis can document current sufficiency, but nothing more

Bottom line on tissue analysis :

current petiole NO₃-N and PO₄-P sufficiency levels are too high
 petiole analysis can document current sufficiency, but nothing more
 leaf analysis for total N and P is the more stable, more reliable measure of crop nutrient status

Bottom line on tissue analysis :

current petiole NO₃-N and PO₄-P sufficiency levels are too high
 petiole analysis can document current sufficiency, but nothing more
 leaf analysis for total N and P is more stable, more reliable measure of crop nutrient status

✓ crop K status can be estimated by either tissue test

