Russell Ranch Sustainable Ag. Facility Research Briefs University of California Davis

Martin Burger, Taryn Kennedy, Guihua Chen, Wes Wallender, Will Horwath, Johan Six

Topics:

- 1. Carbon sequestration
- 2. Nitrous oxide emissions
- 3. Cover crop effects on soil hydraulic properties and yields

Russell Ranch (LTRAS, SAFS) History

Years	Events
1992	Russell Ranch purchased by UC Davis
1994 - 2007	Two-year rotations of processing tomato and corn , tomato/wheat & several wheat systems (10 total)
	Organic :Winter cover crops & compostLow input:Cover crops & synthetic fertilizerConventional:Synthetic fertilizer
	Each system/crop combination each year
2003	SAFS relocates to Russell Ranch from Vegetable Crops facility
2008 - present	Two-year rotations of processing tomato and wheat Organic, low input, and conventional

Carbon Inputs & Carbon Sequestration

Kong et al., 2005

Greenhouse Gas Emissions: Nitrous Oxide (N₂O)

7% of total GHG

Greatest source of ozone depletion in stratosphere

CA agricultural land emits: 52% of total N₂O or

4% of CA total GHG emissions

Source: CEC, 2005

Soil Factors affecting N₂O production and emission

First Rain in Fall: Potential for N₂O Emissions

Long-term Average Water Use (Fl)

Corn Tomato

Soil water content during Dec. 2009 - Mar. 2010

Long-term Change of Soil Infiltration Properties due to Cover Crops?

Yields

Growing Season Water Balance

Calculated percolation below root zone

Summary & Conclusions

- Carbon sequestration is proportional to the size of the organic matter inputs.
- After increased organic matter inputs, soils reach a new equilibrium carbon content that is maintained as long as the organic matter inputs continue.
- Sub-surface drip irrigation significantly decreased N₂O emissions compared to furrow irrigation.
- N₂O emissions increase with increasing fertilizer N additions.
- N₂O emissions were similar with non-legume and leguminous cover crops in plots with a long-term history of legume cover crop inputs at the Russell Ranch.
- Cover cropped soils have higher infiltration rates and the use of cover crops may also increase percolation.

THANKS!

Acknowledgments

Matthew Ong, Karen Adler, Nick Monte, Heather Dang, Travis Wilson, Roxanne Robles, Megan Abercrombie, Erin Lennon, Brian de la Cruz, Ye Yuan, Alan Justin Cariaso, Israel Herrera.

