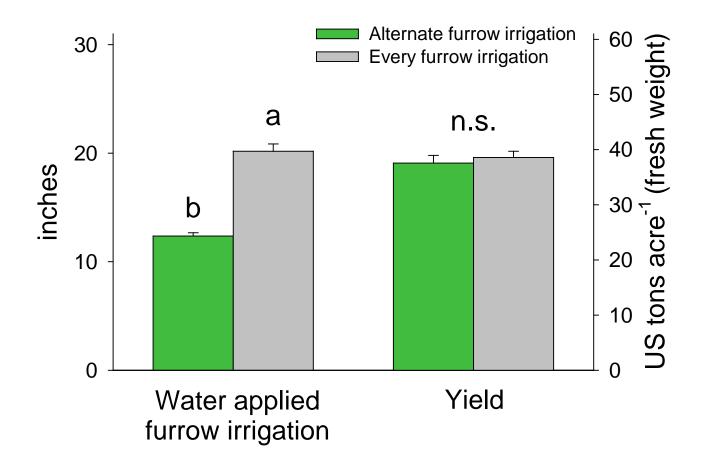


Efficiency of Alternate Furrow Irrigation Is It an Alternative?

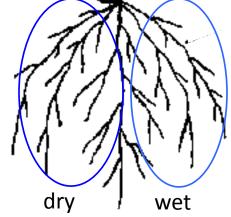

Felipe H. Barrios-Masias and Louise E. Jackson Dept. of Land, Air and Water Resources University of California – Davis

Funding:

CDFA Specialty Crop Block Grant Program - SCB09036

The Western Sustainable Agriculture Research and Education (Western SARE - GW 10-010)

Summary of Results for 4 Field Trials in 2011


On average for the 4 field trials for processing tomatoes:

- No yield difference
- Applied water was reduced by 30%

Alternate Furrow Irrigation: the Basics

- Partial root drying = Alternate furrow irrigation Technique = Practice
- Watering only half of the root system at each irrigation event
- Managing to maintain yields with a reduction in applied water
- Root to shoot signaling and tighter control of transpiration
- Increase crop water use efficiency (yield / applied water), especially in dry years

Can furrow-irrigated processing tomatoes be managed with less water?

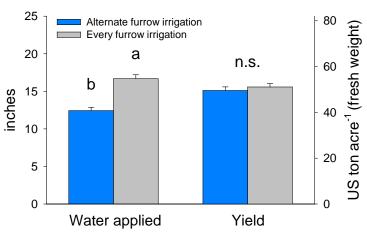
Research Station and On-Farm Experiments

– Two irrigation treatments:

Alternate furrow (AFI) vs. Every furrow (EFI)

- Managed by the 'irrigators'
- No input from the research team on irrigation
- 2010 Research trial: cv. AB2 and CXD255
- 4 on-farm trials in 2011: cv. Shasta

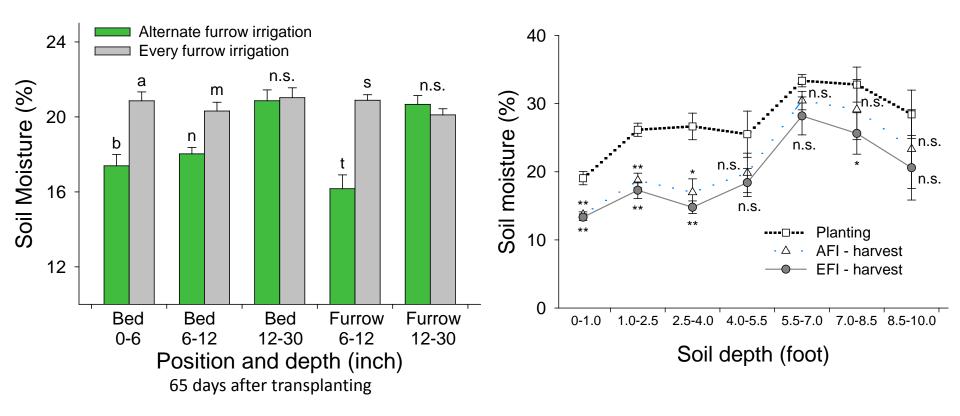
Experimental design


- Irrigation strips of 6 beds each
 - 2010: 2 AFI strips and 2 EFI strips (4 total)
 - 2011: 3 AFI strips and 3 EFI strips (6 total) per field

Soil types:

- Reiff very fine sandy loam (13% clay, 63% sand)
- Yolo silt loam (21% clay, 11% sand)
- Sycamore silty clay loam (30% clay, 7% sand)

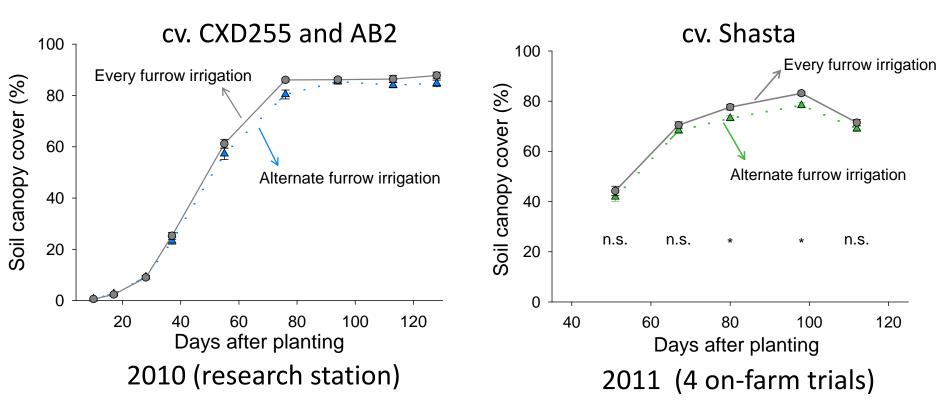
Year 2010

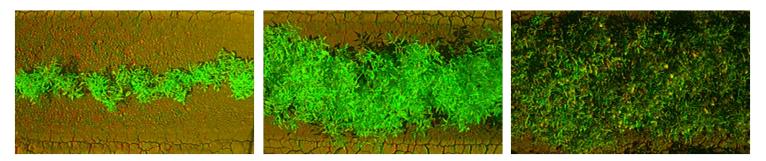


Field Conditions and Measurements

	Year	
	2010	2011
Number of trials	1	4
Field area (acres)	~1	~60
Furrow irrigations	10	6
Planting date	18-May	4-Apr
Harvest	21-Sep	1-Aug
Mean max temp. (°F)	85	78
Mean min temp. (°F)	53	50
Precipitation (inches)	0.4	2.5
Cumulative Et _o	31	27

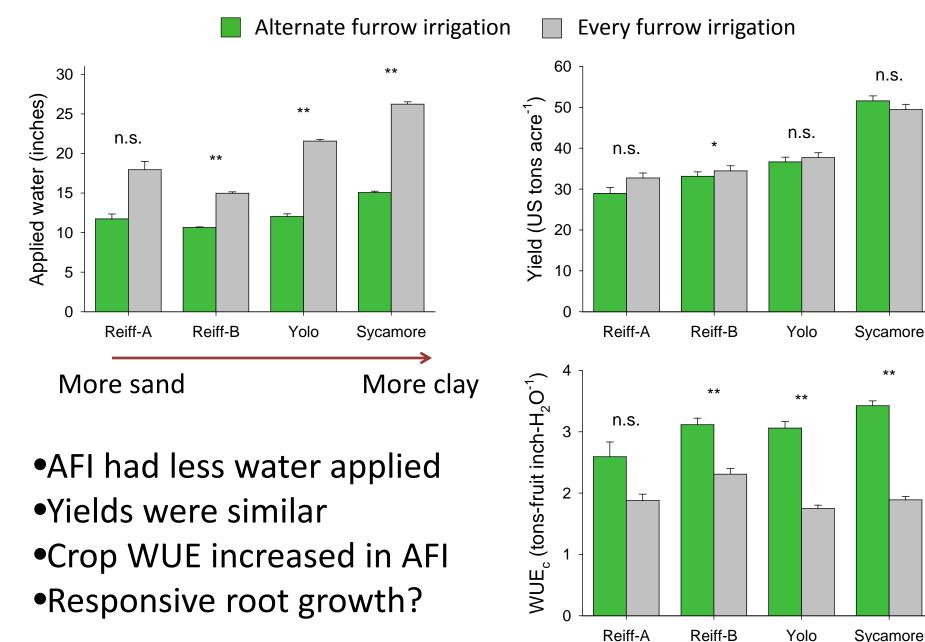
- Plant measurements:
 - Canopy growth
 - Biomass and fruit quality
 - Leaf gas exchange measurements (net photosynthesis, transpiration)
 - -¹³C stable isotope as a indirect measure of WUE from shoots and leaves
- Field-soil measurements
 - Irrigation estimates
 - Soil moisture including 8 or 10 ft deep sampling at planting and harvest


Soil Moisture, Research Station (2010)


Soil type: Reiff very fine sandy loam

Soil moisture content was lower with alternate furrow irrigation in the top 30 cm at mid-season (65 days after planting)
Soil moisture to a depth of 10 feet was similar at harvest

Plant Growth, Years 1 & 2


• Similar canopy growth with both types of irrigation. Slight decrease with alternate furrow irrigation on two dates in 2011

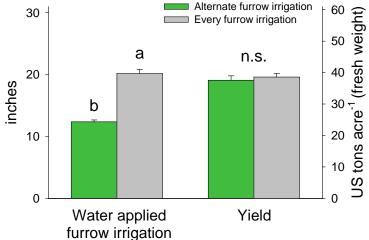
Irrigation and Crop Performance, On-Farm Trials

n.s.

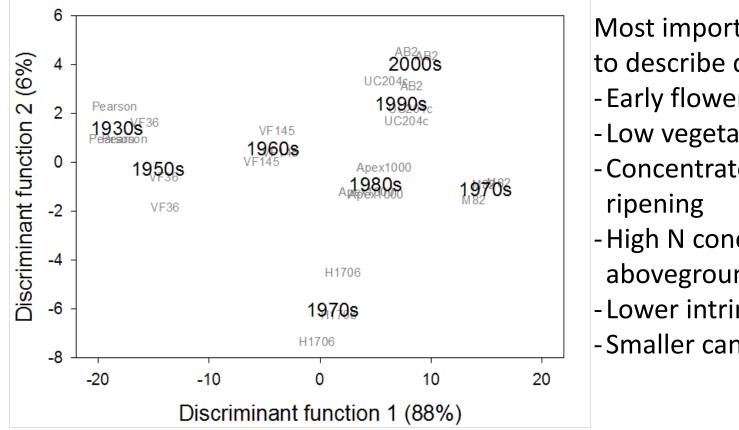
**

Is Alternate Furrow Irrigation an Alternative?

Summary:


- Plant canopy unaffected; physiological water use was regulated efficiently
- No yield differences even in commercial fields -
- Alternate furrow irrigation reduced applied water by 30%
- Crop WUE was >35% higher in AFI
- Facilitate a quick adaptation to dry years
 without capital investment in technology such as drip

Hypothesis:


Responsive root growth + tight transpiration regulation maintains crop water balance and C assimilation with less water resources

Future direction:

Understand how crop physiological traits fit new management strategies if water availability decreases in the future (drip and furrow irrigation)

Suite of Traits and Tomato Cultivar Evolution

Most important suite of traits to describe differences: - Early flowering - Low vegetative biomass - Concentrated fruit set and ripening - High N concentration in aboveground biomass - Lower intrinsic WUE (P_n/g_s) - Smaller canopies

Approach:

- Original data composed of 95 variables related to morphological, physiological and phenological traits from 8 cultivars
- Multivariate analyses: PCA and stepwise discriminant analysis

Barrios-Masias and Jackson, submitted

Quick Survey: Share Your Knowledge

1) In your experience, which cultivars (old or new) have performed best during heat waves or drought? <u>Cultivar name</u> <u>Heatwave</u> <u>Drought</u>

- -
- -

2) How did these cultivars stand out?

Cultivar name

Prolific flowering Good heat set High yield Fruit quality **Other**

3) After a dry winter, would you be willing to use an old cultivar if it performed well under drought or heat waves? Please list cultivars.

- -
- -
- -

4) What other stress-related traits among your currently best performing cultivars would you most like to see improved (other than disease or pest resistance)?

-

-

-

Thank you for listening

Acknowledgements:

- Campbell's R&D Group in Davis; especially Hasan Bolkan, John Lindbo and Keith Walker
- Tomato grower Blake Harlan
- Field irrigators: Jose Lara and Don Ramiro
- Farm advisors, and people from the tomato industry
- Many people from the Jackson Lab at University of California, Davis

Funding from:

- USDA: CSREES 04-51106-02242
- USDA: NIFA SCB09036
- The Western Sustainable Agriculture Research and Education (Western SARE): GW 10-010
- The GA Harris Research Instrumentation Fellowship from Decagon Devices Inc.