# Tomato Spotted Wilt Virus Management Update South Sacramento Valley Processing Tomato Production Meeting January 9, 2013







Robert L. Gilbertson Department of Plant Pathology UC Davis

# Problem: Increased incidence of thrips and TSWV in processing tomatoes in California

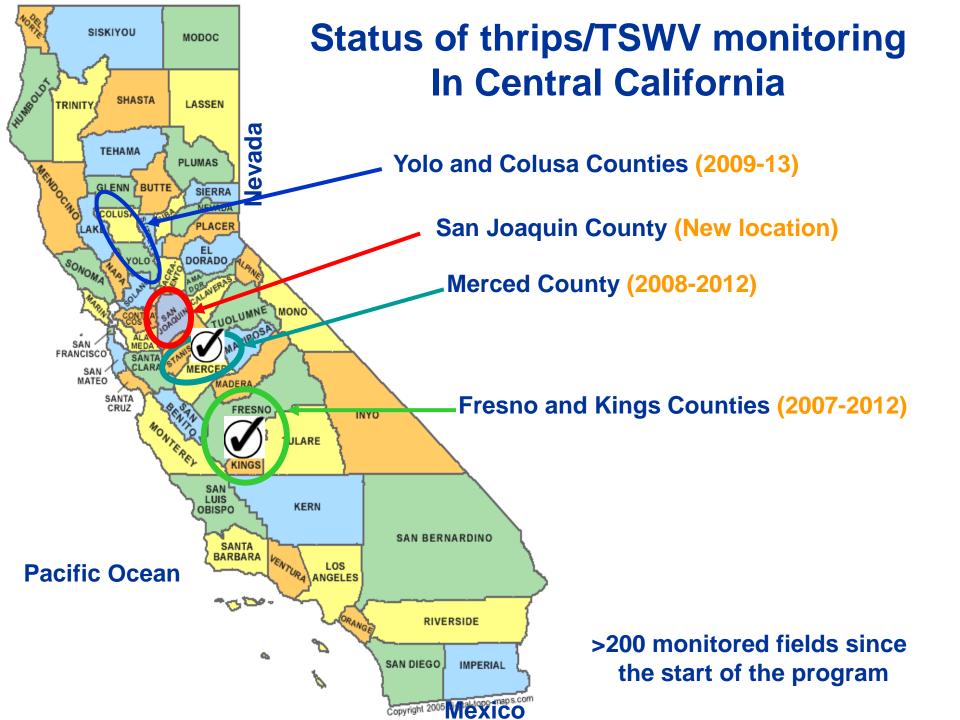




# Western flower thrips (*Frankliniella occidentalis*)






Tomato spotted wilt disease caused by *Tomato spotted wilt virus* 

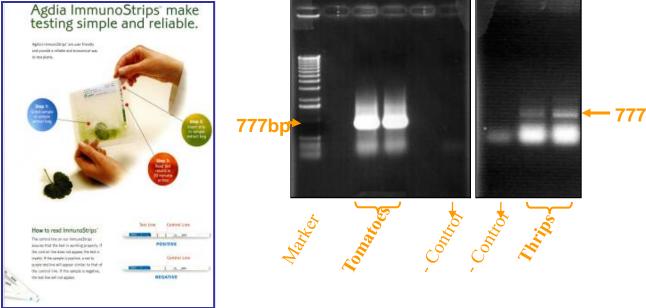
# **Overall Objectives of TSWV Project**

- Develop an understanding of when and where thrips and TSWV gain entry into California processing tomatoes
- Determine dynamics of thrips populations and spotted wilt disease development
- Identify potential inoculum sources (vegetables and tree crops, weeds, ornamentals, etc.)
- > Assess various thrips control strategies

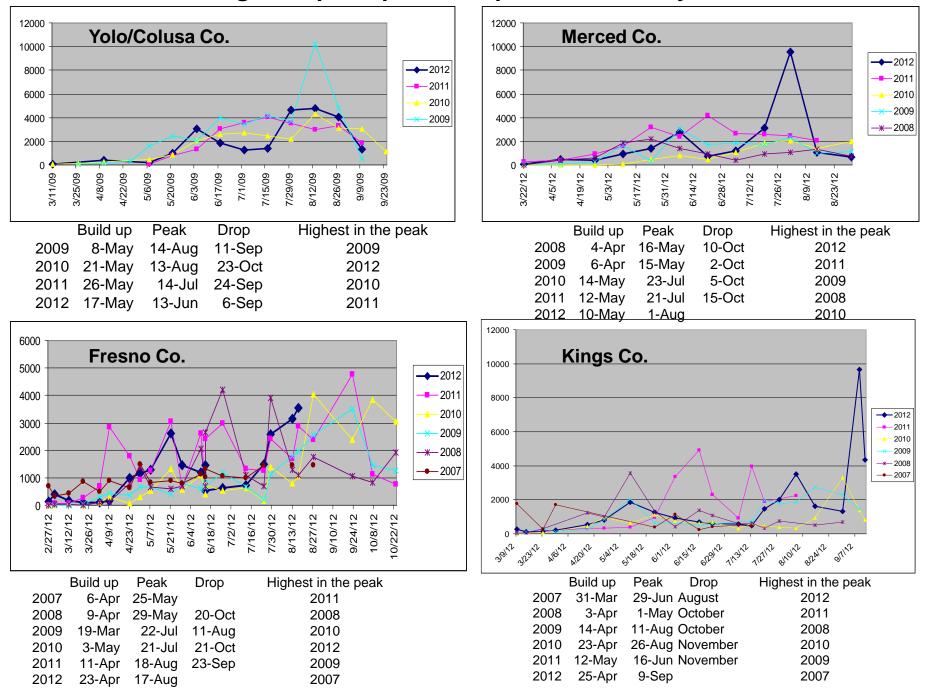
Apply knowledge of thrips and TSWV to develop a regional integrated pest management (IPM) program

Minimize economic losses due to thrips and TSWV




## Monitoring thrips and TSWV in tomato fields

- Thrips are monitored with yellow sticky cards and flower counts
- Virus incidence is determined by visual inspections




• **TSWV infection** is confirmed with immunostrips or RT-PCR



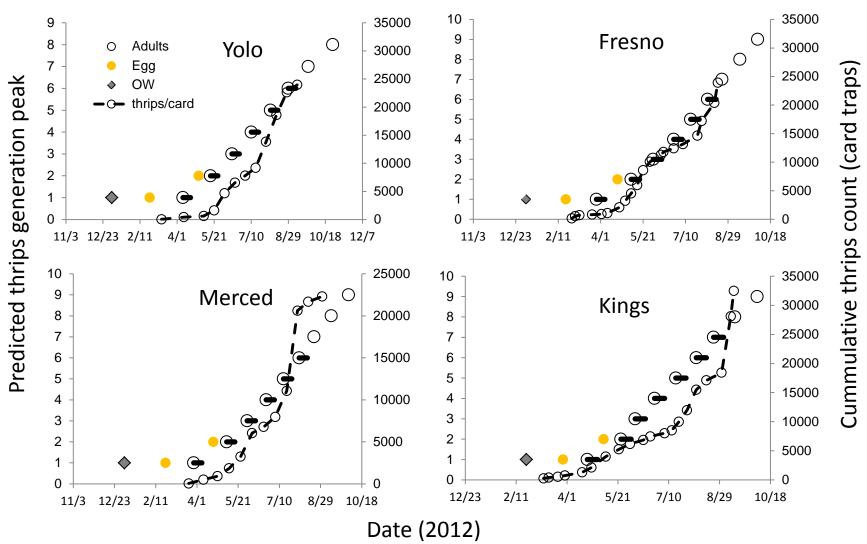


#### **Average Thrips Populations per Yellow Sticky Card**

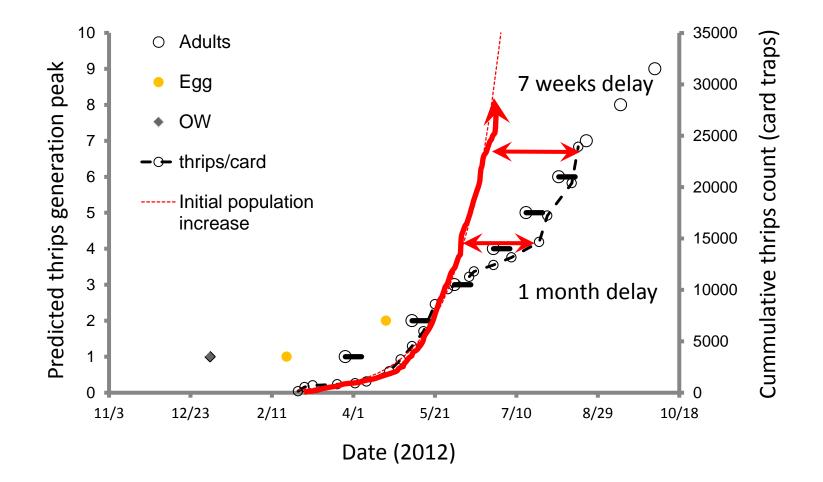


### TSWV in 2012: Did we dodge a bullet in the Northern Counties?

- Fresno/Kings Co.
  - -First symptoms: 14 April in Fresno and late May in Kings
  - -Incidences low to moderate: Fresno (0-14%) and Kings (0.5-7%)
- Merced Co.
  - -First symptoms: early May
  - -Low incidences (0-2%)
- Northern Counties (Colusa, Solano, Sutter and Yolo)
  - -First symptoms: early May
  - -Rapid thrips build-up in May
  - -TSWV was widespread and at high incidences early in the season
  - -Growers and PCA implemented thrips management
  - -Final TSWV incidences were low to moderate (0-12%)
- Overall incidence of TSWV in Fresno, Kings and Merced was the lowest since the beginning of the project; however, widespread incidences in northern counties and San Joaquin County and high incidences in fresh market fields in the I-5 corridor show the continued potential for TSWV outbreaks in tomatoes in the Central Valley


### **Development of a model for predicting thrips populations**

- Current program involves direct monitoring efforts and grower alerts to allow for optimal timing of thrips management
- Developed a degree-day model to predict when thrips populations will begin to develop to allow growers to time spray applications
- Comparing the actual thrips counts with the predictions made by the model
- Long-term goal is to replace direct monitoring with the predictive model and develop an effective approach for providing growers information to know when to know when to spray






# Overview of 2012 model and population data



# Fresno example: Early control delays thrips' build-up

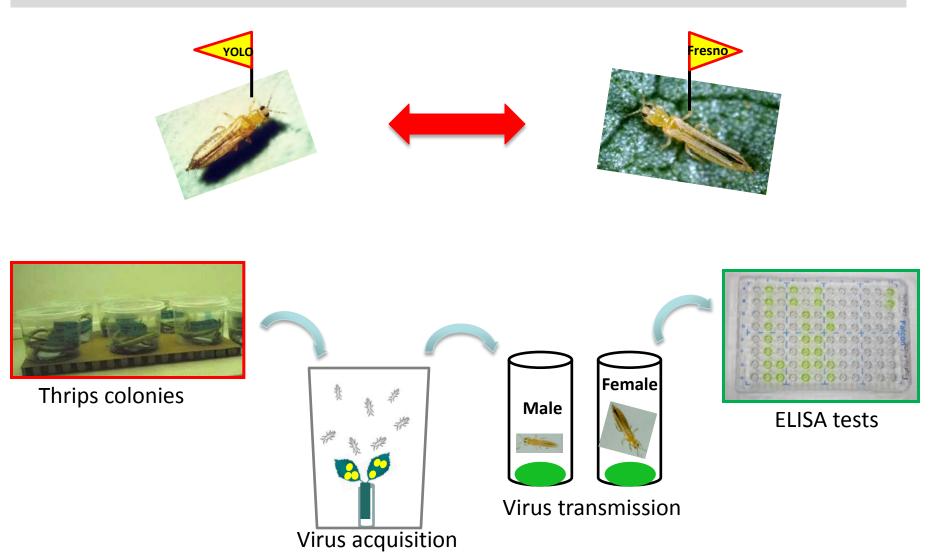


# **Thrips predictive model**

- Qualitative predictions of the model were in good agreement with the actual numbers
- Model is slightly ahead of the actual populations
- Do not know the actual numbers or rate of increase
- Need to test delivery methods (e.g., through CTRI, internet or via smart phones [currently being developed in Florida])
- Need to continue to validate and back-up the predictive model






# Do thrips populations vary in their capacity to vector TSWV?

- A direct correlation does not exist between thrips populations and TSWV incidence, e.g., populations are often higher in Yolo County than Fresno County but TSWV incidence is higher in Fresno
- Tested the hypothesis that the thrips populations in the Fresno may be better at transmitting TSWV





#### Assessment of TSWV transmission efficiencies for populations of *Frankliniella* occidentalis from Fresno and Yolo counties



#### Differences Exist in Fresno and Yolo Thrips Populations in TSWV Transmission Efficiency

| TSWV-Fresno isolate |           |                |           | TSWV-Yolo isolate |         |             |         |
|---------------------|-----------|----------------|-----------|-------------------|---------|-------------|---------|
| Fresno              | Thrips    | os Yolo Thrips |           | Fresno Thrips     |         | Yolo Thrips |         |
| Male                | Female    | Male           | Female    | Male              | Female  | Male        | Female  |
| $45\% (8)^{a}$      | 42.5% (8) | 40% (7)        | 25.7% (7) | 42% (5)           | 32% (5) | 26% (5)     | 18% (5) |
| 43.8%               |           | 32.9%          |           | 37                | %       |             | 22%     |

<sup>a</sup> Numbers in parentheses represent replicates of independent experiments

#### Conclusions

- Differences exist in the transmission efficiencies of *F. occidentalis* populations from Fresno and Yolo Counties
- Fresno thrips population was more efficient at transmitting TSWV isolates from Fresno and Yolo (43.8% for TSWV-Fresno and 37% for TSWV-Yolo) than the Yolo thrips population (32.9% for TSWV-Fresno and 22% for TSWV-Yolo)
- Adult male adult thrips transmit TSWV more efficiently than adult female thrips
- Relevance
  - -May explain why fields in Yolo can have higher thrips populations than in Fresno but less TSWV incidence
  - -Continued high levels of thrips and TSWV may lead to co-evolution of thrips populations/TSWV isolates with higher transmission efficiencies

# Challenge: Where are the thrips and TSWV coming from early in the season?

TSWV reservoirs vary depending on region

- -Fresno/Kings: weeds (prickly lettuce and sowthistle), lettuce, radicchio
- -Merced: radicchio and weeds (?)
- -Colusa/Yolo: fava beans, lettuce, radicchio and weeds (?)

#### Thrips reservoirs

- -Fresno/Kings: onions and wheat
- -Merced: radicchio, alfalfa
- -Colusa/Yolo: onions, alfalfa and wheat



Roadside or indigenous weeds: all locations



**Radicchio in Merced** 

#### Weed survey results for TSWV incidence during 2012

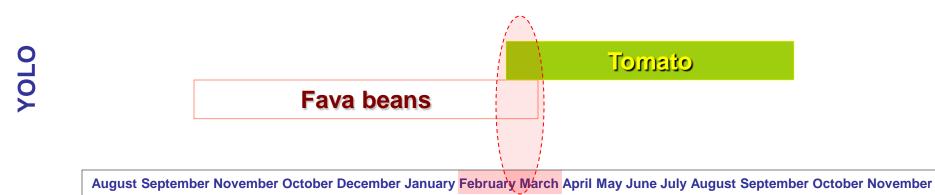
|                                       | Weed <sup>a</sup>          | Tested (+) | Weed <sup>a</sup>  | Tested (+) |
|---------------------------------------|----------------------------|------------|--------------------|------------|
|                                       | Black nightshade           | 10 (1)     | Curlydock          | 22 (0)     |
|                                       | Bindweed                   | 58 (0)     | Malva              | 68 (0)     |
|                                       | Flaree                     | 30 (0)     | Datura             | 10 (0)     |
|                                       | Pineapple weed             | 24 (0)     | Monocots           | 18 (0)     |
| (                                     | Sowthistle                 | 134 (7)    | Shepherd's purse   | 3 (0)      |
| · · · · · · · · · · · · · · · · · · · | Prickly lettuce            | 85 (2)     | Fiddler neck       | 5 (0)      |
|                                       | Russian thistle            | 16 (0)     | Pigweed            | 8 (0)      |
|                                       | Buckhorn Plantain          | 8 (0)      | Turkey mullein     | 15 (0)     |
|                                       | Wild radish and<br>Mustard | 30 (0)     | Other common weeds | 38 (0)     |

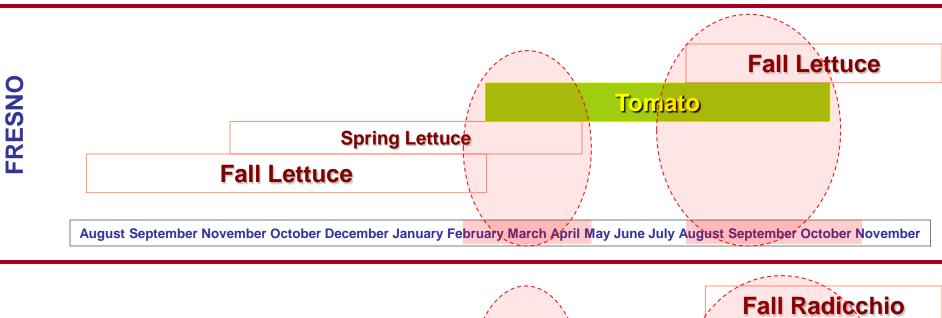
#### Total : 10/602

(+) number of plants tested positive for TSWV by immunostrips and RT-PCR. **a**, Total weed samples from all counties

# **Bridge crops**

 Bridge crops are those grown during winter (tomato-free) months and that serve as potential sources of TSWV (radicchio, lettuce and fava bean) or thrips (alfalfa, onion and wheat) for spring-planted tomatoes
 Bridge crops 2012


-Fresno-low TSWV in spring lettuce (<1%)-not a major inoculum source? (note that high rates of TSWV in fall lettuce did not carry over into spring lettuce); one radicchio field had a high rates of TSWV but was harvested before tomatoes were planted</li>
-Merced-radicchio was free of TSWV and had low thrips populations
-Colusa/Yolo-two fava bean fields with ~3% TSWV were identified and associated with early TSWV outbreaks in Yolo County




Lettuce in Fresno County



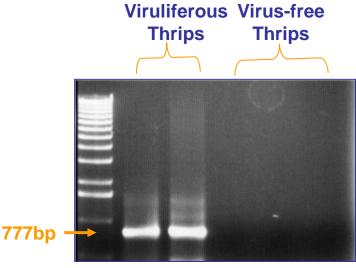
**Radicchio in Merced County** 

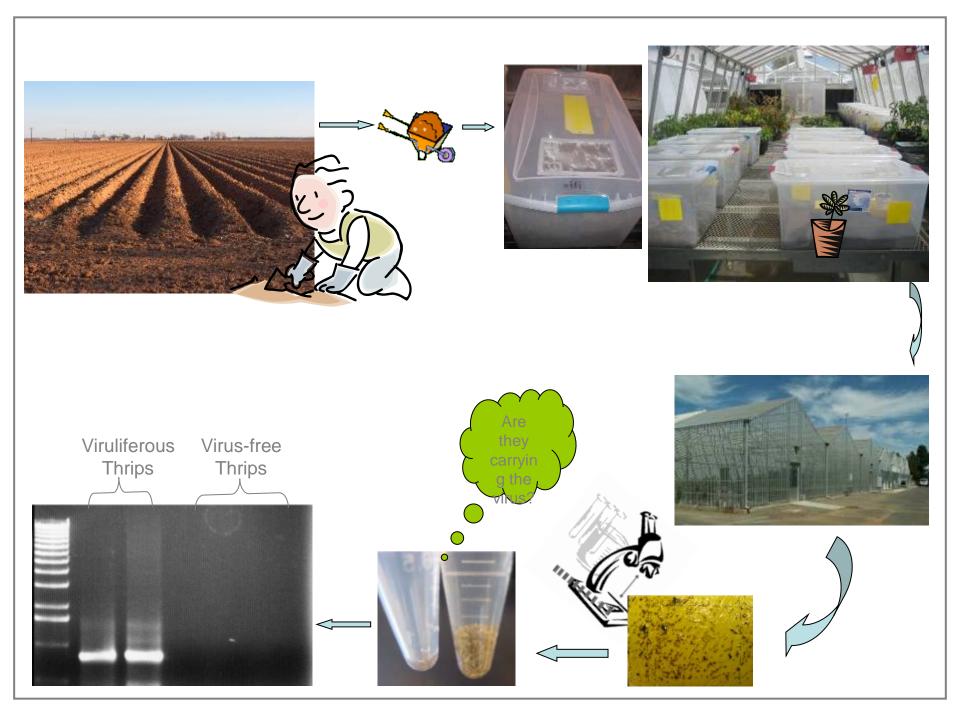






August September November October December January February March April May June July August September October November


**Spring Radicchio** 


Tomáto

# Are viruliferous adult thrips emerging from soil a potential TSWV inoculum source?

- A possible source of TSWV inoculum early in the growing season is adult thrips emerging from pupae in soil
- In February 2011 and 2012, soil was collected from fields with crops known to have high incidences of thrips and TSWV in 2010 and 2011 and assessed for:
  - -Emerging adult thrips
  - -TSWV in these thrips (PCR assay and indicator plants)

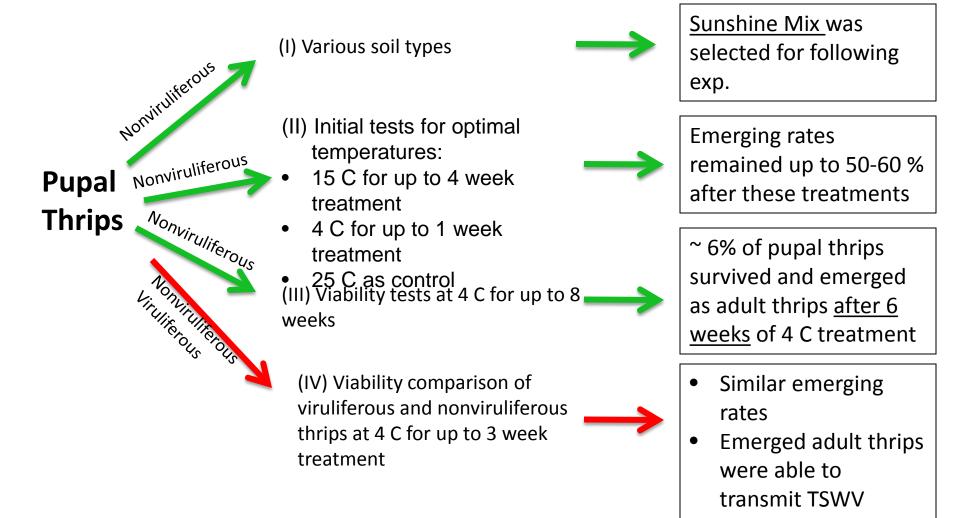






# Summary of the assessment of the potential role of the soil-emerging thrips (soils from fields in 2012)

| Sample<br># | Source of the soil samples | Collection<br>Date | Previous/Current<br>Crop Type | Number<br>of<br>captured | RT-PCR<br>tests of<br>thrips | RT-PCR<br>tests of<br>plants | Soils<br>Discarded |
|-------------|----------------------------|--------------------|-------------------------------|--------------------------|------------------------------|------------------------------|--------------------|
|             | Yolo & Colusa Counties     |                    |                               |                          |                              |                              |                    |
| 1           | HWY 113                    | 1-Mar              | Weedy Prunus                  | 129                      | Negative                     | Negative                     | 27-Apr             |
| 2           | Sutter County              | 1-Mar              | Proc. Tomato                  | 12                       | Negative                     | Negative                     | 27-Apr             |
| 3           | Yolo/Colusa County Line    | 1-Mar              | Proc. Tomato                  | 26                       | Negative                     | Negative                     | 27-Apr             |
| 4           | Yolo Rd 29                 | 1-Mar              | Fava Beans                    | 40                       | Negative                     | Negative                     | 27-Apr             |
|             | Merced County              |                    |                               |                          |                              |                              |                    |
| 5           | SM Sandy Mush - Merced     | 29-Feb             | Fall Radicchio                | 14                       | Negative                     | Negative                     | 27-Apr             |
| 6           | LG La Grand RdMerced       | 29-Feb             | Late Fresh Mark. To           | 2                        | Negative                     | Negative                     | 27-Apr             |
| 7           | HT Hunt RdGustine          | 29-Feb             | Late Fresh Mark. To           | 1                        | Negative                     | Negative                     | 27-Apr             |
| 8           | PT Paterson/Wastley        | 29-Feb             | Weedy Almond                  | 9                        | Negative                     | Negative                     | 27-Apr             |
|             | Fresno County              |                    |                               |                          |                              |                              |                    |
| 9           | Gale & Butte               | 28-Feb             | Onion                         | 37                       | Negative                     | Negative                     | 27-Apr             |
| 10          | Woolf Creek                | 28-Feb             | Proc. Tomato                  | 4                        | Negative                     | Negative                     | 27-Apr             |
| 11          | North -Fairbaugh           | 28-Feb             | Proc. Tomato                  | 174                      | Negative                     | Negative                     | 27-Apr             |
| 12          | Farming D -Five Point      | 28-Feb             | Spring lettuce                | 10                       | Negative                     | Negative                     | 27-Apr             |
| 13          | North -Fairbaugh           | 28-Feb             | Almond                        | 4                        | Negative                     | Negative                     | 27-Apr             |
|             | Kings County               |                    |                               |                          |                              |                              |                    |
| 14          | John Farms                 | 28-Feb             | Proc. Tomato                  | 3                        | Negative                     | Negative                     | 27-Apr             |
| 15          | Huron                      | 28-Feb             | Fall Radicchio                | 149                      | Negative                     | Negative                     | 27-Apr             |
| 16          | Plymouth                   | 28-Feb             | Weedy Almond                  | 13                       | Negative                     | Negative                     | 27-Apr             |
| 17          | UC Davis Greenhouse        | 28-Feb             | Sterile soil; (-) control     | 0                        | N/A                          | N/A                          | 27-Apr             |


### **Overwintering of Thrips in Soil: Conclusions**

- Thrips can stay dormant in soil for long periods
- Adult thrips emerged from soils, indicating that thrips can overwinter in soil (probably as pupae)
- If the total volume of soil in these fields is considered, these populations could be important
- We did not find that viruliferous thrips were emerging from soil





# Overwintering assays for thrips emerging from soil under cold conditions



| Development of TSWV in Processing Tomato Fields                          |                                                                                                    |                                                                                              |                                                  |  |  |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|
| Winter                                                                   | Early-Mid Season                                                                                   | Late Season                                                                                  | Fall                                             |  |  |  |
| TSWV overwinters at<br>low levels in weeds*,<br>bridge crops* and thrips | Infections with TSWV –<br>low incidences,<br>dependent on<br>populations of<br>viruliferous thrips | Potential for higher<br>incidences/epidemics<br>and economic losses in<br>late-planted crops | Persistence in weeds,<br>bridge crops and thrips |  |  |  |
| High<br>Viruliferous adult thrips<br>emerging from soil                  | Amplification in susceptible crops                                                                 |                                                                                              | Dormant viruliferous thrips<br>pupae in soil     |  |  |  |

| Winter: Thrips<br>overwinter at very low<br>levels | <b>Spring:</b> Thrips<br>populations increase-<br>temperature dependent | Summer: Peak<br>populations                       | Fall: Populations decrease         |
|----------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|
| High<br>Adult thrips emerge<br>from soil           | Target: 2 <sup>nd</sup> and 3 <sup>th</sup><br>Adult thrips Generation  | s<br>Increased Viruliferous<br>thrips populations | Thrips pupae overwinter<br>in soil |

December January February March April May June July August September October November

### Development of a risk assessment index for thrips and TSWV in processing tomato fields

- A risk index for thrips and TSWV for individual tomato fields was refined and applied to monitored fields in 2012
- Based upon point values assigned to factors that minimize or favor development of thrips/TSWV
- These factors include: variety, planting date, plant population, insecticide application, thrips populations, proximity to TSWV-susceptible crops, TSWV history in the growing area, etc.

#### Tomato spotted wilt virus Risk Index for Tomatoes-2012

| Tomato Variety <sup>1</sup>              | Examples                                            | Risk Index Points                     |
|------------------------------------------|-----------------------------------------------------|---------------------------------------|
| a,b,c                                    | stunted plt w less fruit, very severe, dead like    | 50                                    |
| d,e,f                                    | Res. size plt w less fruit, severe symptoms         | 40                                    |
| g,h,i                                    | Nor. size plt w many fruits severe symptoms         | 30                                    |
| j,k,l                                    | Nor. plt w many fruits some symptoms                | 20                                    |
| m,n,o                                    | Vigor.Plt w many fruits almost no symptom           | <u>10</u>                             |
| p,q,r                                    | with SW5                                            | ( -35                                 |
| Planting Date <sup>2</sup>               |                                                     | · · · · · · · · · · · · · · · · · · · |
| Prior to February 1                      | First planted fields in any given region            | 10                                    |
| February 1-29                            | week or two later than first planted fields         | 15                                    |
| March 1-15                               | week earlier than recommended period                | 10                                    |
| March 16- April 31                       | Recommended period (Majority of fields)             | 5                                     |
| May 1-20                                 | week or two later than majority of fields           | 15                                    |
| May 21- June 5                           | tree week or more later planted from major          | 25                                    |
| After June 5                             | latest planted fields in a given region             | 35                                    |
| Plant Population <sup>3</sup>            |                                                     | 1                                     |
| Less than 1 plant per foot               | single row (7000 per acre)                          | , 35                                  |
| 2 to 3 plants per foot                   | double row (9000 per acre)                          | 15                                    |
| More than 3 plants per foot              | double row but more dens (>9000 per acre)           | 5                                     |
| Planting Method                          |                                                     |                                       |
| Direct seeded                            |                                                     | 10                                    |
| Transplanted                             |                                                     | 5                                     |
| Proximity to Known Bridge Crops          |                                                     |                                       |
| adjacent                                 | radicchio, lettuce, fava, weed/fallow field, pepper | r or tomato 25                        |
| less than 1 mile radius distance         | (if TSWV confirmed add 20 more points)              | 15                                    |
| 1-2 mile radius distance                 | (if TSWV confirmed add 10 more points)              | / 10                                  |
| greater than 2 mile or None              | (if TSWV confirmed add 5 more points)               | 5                                     |
| Proximity to Thrips Source               |                                                     |                                       |
| adjacent                                 | wheat, pea, alfalfa or weedy patches etc.           | 20                                    |
| less than 1 mile radius distance         |                                                     | 15                                    |
| 1-2 mile radius distance                 |                                                     | 10                                    |
| None                                     |                                                     | 5                                     |
| At-Plant Insecticide                     |                                                     |                                       |
| None                                     |                                                     | 15                                    |
| for other pests (+ thrips)               |                                                     | 10                                    |
| specifically for thrips                  |                                                     | 5                                     |
| Weed situation/Herbicide use             |                                                     |                                       |
| w/out herbicide but weedy                | In-field ONLY weed population                       | 15                                    |
| w/out herbicide, but not so weedy        |                                                     | 10                                    |
| w/out pre emergence herbicide or NO weed |                                                     | 5                                     |
| Total Points (0-225)                     | Risk of Losses Due to TSWV                          |                                       |
| Less than o <mark>r equal to 95</mark>   | Low                                                 |                                       |
| Greater than 100 or equal to 150         | Moderate                                            |                                       |
| Greater than 150                         | High                                                |                                       |

| Monitored Fields 2012 |                                           |        | <b>Risk Index</b>                       | Legends                          |
|-----------------------|-------------------------------------------|--------|-----------------------------------------|----------------------------------|
|                       | Northern Counties                         | TSWV % |                                         |                                  |
| RO                    | Winters, Yolo                             | 0      | (1120) (12)                             | Less than or equal to 95         |
| BF                    | County Line, Colusa                       | 7      | <=====================================  | Low                              |
| AO                    | County Line, Colusa                       | 0      | < 801312                                | <221117>                         |
| PR                    | Dixon, Solano                             | 2      | <u>&lt;</u>                             | Greater than 100 or equal to 150 |
| EG                    | Robin,Sutter                              | 12     | <>                                      | Moderate                         |
| YL                    | Yolo Town,Yolo                            | 7      |                                         |                                  |
|                       | Merced County                             |        |                                         |                                  |
| PT                    | Rogers Rd, Paterson                       | 2      | <11451312                               | Greater than 150                 |
| GC                    | Gun Club Rd, Gustine                      | 1      | <11501312>                              | High                             |
| FM                    | Fentem Rd, Gustine                        | 2      | <11351312                               | <>                               |
| BC                    | Bert Crane Rd, Merced                     | 0      | < <u>1120131</u> >                      |                                  |
| DF                    | Dickenson Ferry Rd, Merced                | 0      | < <u>11401312</u>                       |                                  |
| LG                    | Le Grand Rd, Merced (Fresh Market)        | 0.5    | <11351512                               |                                  |
| BH                    | Buchanan Hallow Rd, Merced (Fresh Market) | 0.5    |                                         |                                  |
|                       | Fresno County                             |        |                                         |                                  |
| North                 | Firebough area                            | 7      | <====================================== |                                  |
| Oakland               | Five Points area                          | 12     | 155                                     |                                  |
| Mt.Whitney            | Five Points area                          | 0      | <11451312                               |                                  |
| Tranquility           | Tranquility area                          | 2      | < <u></u>                               |                                  |
| Nees                  | Firebough area                            | 14     | 160                                     |                                  |
| Harris                | Five Points area                          | 0.5    | <111051321>                             |                                  |
|                       | Kings County                              |        |                                         |                                  |
| Tomato #1             | Lassen Ave between Phelps and Jayne       | 2      | <11 <u>105</u> 1312>                    |                                  |
| Tomato #2             | Laurel Ave at Avenal Cutoff               | 0.3    | < <u></u>                               |                                  |
| Tomato #3             | Nevada Ave & Kent                         | 2      | <11101312                               |                                  |
| Tomato #4             | El Dorado Ave near Dorris                 | 5      | <11151312                               |                                  |
| Tomato #5             | Lassen Ave & Tornado                      | 7      | <7.145.1322>                            |                                  |

## **Development of a risk assessment index for thrips and TSWV in processing tomato fields**

- Expand the application of the risk index to more commercial fields in 2013
- Continue to refine the risk index based on the results with these fields and our further understanding of the biology of thrips and TSWV in Central California
- Make the risk index available to growers, PCAs and others through the CTRI, UC-IPM web site or other venues
- Make the use and interpretation of the risk index (and thrips degree-day model) user-friendly

**An IPM program** has been developed for thrips and **TSWV** in processing tomatoes in California. It has been summarized in a recently prepared flyer

### **TOMATO** SPOTTED WILT DISEASE

es.

s of temato and thrips

thevirus als to minimize

ner spread.

nd around fields

more and destroy and tomato plants Anow and destroy de lands planes on a

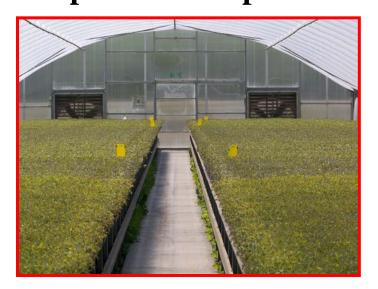
and head in advantant una contract of the second and weeds counteres in tallow buddy road

e resistance in

Silinferted at the sent

Detection, Epidemiology, and Integrated Pest Management (IPM)




Robert L. Gilbertson Ozgur Batuman \* Michelle LeStrange Tom Turini • Scott Stoddard Gene Miyao \* Diane Ullman Departments of Plant Pathology and Entomology, UC Davis and UC Cooperative Extension

> Prepared by the University of California Agriculture and Natural Resources Statewide IPM Program

Continued refinement of the IPM strategy for thrips and TSWV in processing tomatoes

# **IPM for thrips and TSWV**

- Before planting
  - -Calculate risk assessment for fields make decisions to lower risk
  - -Varietal selection
    - -Plant TSWV resistant varieties (with Sw-5 gene) especially in hot-spot areas or late-planted fields
    - -Varieties without the Sw-5 gene vary in susceptibility
  - -Field selection and planting time (avoid hot-spots, planting near fields with bridge crops or late planting dates)
    -Plant TSWV- and thrips-free transplants



# **IPM for thrips and TSWV**

- During the season
  - -Monitor fields for thrips (yellow sticky cards) or use predictive degree-day model and manage thrips with insecticides at early stages of crop development and when thrips populations begin to increase
  - -Rotate insecticides to minimize development of insecticide resistance in thrips
  - -Monitor fields for TSWV and remove infected plants early in development and when percent infection is low (<5%)
  - -Weed control in and around fields





## **Integrated TSWV Management**

### • After harvest

- -Promptly remove and destroy plants after harvest
- -Avoid 'bridge' crops that are TSWV/thrips reservoirs and overlap with tomato/pepper (e.g., radicchio, lettuce, fava bean)
- -Control weeds/volunteers in fallow fields, non-cropped, or idle land near next year's tomato fields



TSWV Team

Ozgur Batuman Li-Fang Chen Neil McRoberts Diane Ullman Robert Gilbertson Thrips counters

Michelle LeStrange Gene Miyao Scott Stoddard Tom Turini





California processing tomato growers and PCAs

California Tomato Research Institute (CTRI)