

Crop Improvement and Protection Research Unit

Rapid Molecular Diagnostics for Strawberry Soilborne Pathogens

Phytophthora cactorum Photo: F. J. Louws

Verticillium dahliae (wilt) Photos: Steve Koike

Macrophomina

phaseolina

(charcoal rot)

Fusarium oxysporum (Wilt)

Timothy Miles, Alyssa Burkhardt, Frank Martin, Marina Ramon, Steve Koike, Stacy Mauzey

Diagnosis:

Macrophomina Fusarium Verticillium Phytophthora

?

4

Why develop rapid molecular diagnostics?

• Multiple plant pathogens can cause the same symptoms

- Plating infected plant samples on media is effective, but time consuming
- GOAL: Develop **rapid** and **specific** molecular assays to detect major soilborne diseases of strawberry

ODNA-based Methods:

OTaqMan real-time quantitative PCR assay

ORapid Isothermal Recombinase Polymerase Amplification (RPA) Assay

Macrophomina or Fusarium? Molecular Tests Could Tell You!

Photos: Steve Koike

Phytophthora TaqMan assay: a model system

atp9-nad9 assay based on mitochondrial gene order differences

- Amplicon size: 370-400 bps
- Genus specific detection capability (except P. bisheri and P. frigida)
- Over 50 species specific TaqMan probes validated
- Over 175 in silico probes predicted
- O Sensitivity ~100 fg/µl
- Specificity tested on over 130 Phytophthora taxa and several Pythium and Phytopythium species

Bilodeau et al. in Phytopathology (2014) Miles et al., in Plant Disease (2017) in press

Recombinase Polymerase Amplification of Phytophthora Assay

What steps go into making a good assay?

- O Specificity
 - O Detects ONLY the pathogen of interest
 - O Select region that is conserved among all isolates of the pathogen
- O Sensitivity
 - O Can detect very low levels
 - OHigh copy number
- Optimization
 - O Best conditions for assay
 - O Works with variety of samples

Workflow for molecular assay development

M. phaseolina isolates from strawberry hosts group in a single phylogenetic clade from SSR analysis

Identify a Target

• Mitochondrial Genomes

O Use comparative genomics

OSequence and assemble multiple isolates

OEx: Sequenced 15 isolates for Macrophomina and 12 isolates from Fusarium to find unique loci

OSelect isolates that are closely related but have different host selection/pathogenicity

Check locus specificity with regular PCR

- Use primers designed for TagMan assays to amplify a specific locus
- Test multiple +/- samples
- Takes 1-2 hours to run PCR
- Takes 1-2 hours to run gel
- O Is there a faster way??
- How much pathogen is in the sample?

Quantitative PCR

- O Time from start to finish 1.5 hours
- O Like conventional PCR but uses fluorescent dye
- Quantitative signal timing can correspond to the amount of target DNA
- O Typically more sensitive than conventional PCR
- Specificity based on primer location AND on a probe (in the case of TaqMan qPCR)
- O Can detect multiple targets in the SAME reaction

Real-time PCR (TaqMan method)

Idaho State University

Fusarium oxysporum f. sp. fragariae TaqMan Assay

- Using locus published by Suga et al. Plant Disease 2013
- Sensitivity =200 fg
- O Specificity
 - O 48 isolates tested
 - O 7 positive
 - O 41 negative
- Negative samples from 20 other hosts including spinach, basil, corn, sweet potato, tomato, watermelon

Macrophomina phaseolina Taqman assay

- Unique locus identified through comparative genomics
- O Sensitivity: 200 fg
- Specificity: 87 isolates tested
 - 54 positive (in strawberry clade)
 - 33 negative (out of strawberry clade)
- Nested PCR in development to detect microsclerotia in SOIL

Verticillium dahliae TaqMan Assay

Published by Bilodeau *et al.* in Phytopathology (2012)

- <u>Sensitivity</u>
 - 1-2 microsclerotia/g of soil
 - **31 soil samples** tested to evaluate sensitivity

<u>Specificity</u>

- Tested with fungal DNA from multiple Verticillium species
- **70 isolates tested** (40 positive)

Pythium genus specific TaqMan assay

Assay currently in development to compliment the *Phytophthora* genus specific assay

- <u>Sensitivity</u>
 - ~100 fg
 - Validated on 175 environmental samples

<u>Specificity</u>

- Tested with 81 different *Pythium* species
- Tested against 145
 Phytophthora taxa

Making these assays rapid and portable

Phytophthora cactorum Photo: F. J. Louws

Verticillium dahliae (wilt)

Macrophomina phaseolina (charcoal rot)

Fusarium oxysporum (Wilt)

Recombinase polymerase amplification (RPA)

- OUtilizes 3-4 enzymes to produce an amplicon
- O**Fast:** Results within 5-25 minutes
- OCan be multiplexed with multiple dyes, similar to TaqMan
- O<u>Very limited</u> sample prep required
- ONot quite as sensitive as TaqMan PCR

Recombinase polymerase amplification (RPA)

Advantages of RPA over other technologies

OFast!

ONo traditional DNA extraction is required and can use very crude samples (see right)

O Tolerant of PCR inhibitors

• Multiple ways to read results (fluorometric or lateral flow), some are portable

OCan perform nested PCR to confirm a product

Crude root sample

Reading a RPA reaction fluorometrically

A) Twista/ESEQuant (Twistdx/Qiagen)

B) T16 isothermal/Axxin (Twistdx/Axxin)

C) Genie II/III (Optigene) D) SMART-Dart (Diagenetix)

Any qPCR machine

What does an amplification look like?

Currently developed RPA assays for Phytophthora spp.

trnM-trnP-trnM

• Phytophthora genus specific (Miles et al., 2015)

atp9-nad9

- OP. cactorum*
- OP. cinnamomi*
- P. fragariae*
- P. kernoviae (Miles et al., 2015)

OP. rubi*

- P. sansomeana (Rojas et al., 2017 in press)
- P. sojae (Rojas et al. 2017 in press)
- P. ramorum (Miles et al., 2015)

TestA.F	ISM P	and a	Testa	
		Cuth.	Critical	7
				t
AUPT	Argit-P	l l		
	atp9	Ē.	nad9	•
	Specif	ic RPA revers	e primers	

*Miles and Martin, in preparation

Laboratory validation of recent Phytophthora RPA assays

- Validated tests on over 96 Phytophthora species, 22 Pythium species and a wide range of plant species
- Field validation on a variety of samples
- RPA results agreed with CMA plating
 - P. cactorum (9 positive out of 21 samples)
 - P. cinnamomi (21 positive out of 57 samples)
 - P. rubi (8 positive out of 11 samples)
- TaqMan detected 2 more positives in *P*. *cinnamomi* samples
 - Evidence that avocado tissue can inhibit RPA at extremely low pathogen titer

P. cactorum

P. cinnamomi

P. rubi

Fusarium oxysporum f. sp. fragariae RPA

- O DNA From Fungal Tissue
- O Pure DNA extracted
- Specificity: **48 isolates tested**
- O 7 positive, 41 negative
- Sensitivity: 32 pg
- O Crude Tissue Extract
- Specificity: 22 plants tested
 - 13 positive, 7 negative * corroborates with diagnostic lab testing
 - 2 negative plants don't match lab positive

Macrophomina phaseolina RPA

- Macrophomina assay in early stages of development
- Using specific locus from TaqMan assay
- Sensitive to 1 pg
- No false positives for Fusarium or Verticillium
- Positive result for 20 crown tissues lab-tested positive for Macrophomina
 - 2 plants don't match lab culture positive

Verticillium dahliae RPA

- RPA assay being developed from same loci used for TaqMan assay published by Bilodeau et al. 2012
- Current problems with specificity within Verticillium in the RPA assay need additional troubleshooting
- Is able to detect all tested V. dahliae isolates and does not detect crown samples infected with Macrophomina or Fusarium

Outreach with RPA assays

- Currently we have worked on transferring these assays to a number of collaborators scientists at the follow institutions:
 - Michigan State University
 - O UC Riverside
 - Oregon State University
 - USDA-Animal Plant Health Inspection Service
 - California Department of Food and Agriculture
 - Canadian Plant Health Inspection Service
 - Agdia Inc.
 - UC Cooperative Extension
- RPA assays have been incorporated as a Mycology lab at CSUMB
- Our most active collaboration has been with Steve Koike's lab at UCCE in transferring the *Phytophthora* assays for routine diagnoses

Technology transfer of RPA: Molecular laboratory diagnostic at UCCE in Salinas

Molecular diagnostic equipment at UC Cooperative Extension in Monterey County

Phytophthora assays at UCCE on strawberries

- Due to rains in early 2016 many *Phytophthora* samples were received at UCCE in Steve Koike's laboratory.
- A total of 27 strawberry samples were tested using the RPA method; 25 of these samples were simultaneously tested with the culture medium isolation method
- For 20 of the 25 total samples, the RPA and isolation methods were in agreement regarding *Phytophthora*;
 - 8 times RPA and isolations agreed that the sample was positive for Phytophthora
 - 12 times RPA and isolations agreed that the sample was negative for this pathogen
- For the 5 remaining:
 - O 2 were positive for RPA but negative for isolation***
 - O 3 were negative for RPA but positive for isolation
- ***These two samples tested positive for the red stele pathogen (P. fragariae) using the species-specific primers for that species. For these two particular cases, we were unable to find or obtain P. fragariae using isolation methods

Future directions of this work

- Complete assay development and validation in the laboratory
 - Goal is to validate assays with at least 40 infected plants per assay
 - O Improve extraction techniques for better sensitivity and specificity of RPA reactions
- Expand RPA assays to study other items outside of plant tissue into soil diagnostics
- Transfer assays to Steve Koike's laboratory at UCCE and validate on field samples

Thank you!

Acknowledgements

- UCCE: Steve Koike and Stacy Mauzey
- USDA-ARS: Dr. Frank Martin, Dr. Marina Ramon, Dr. Guillaume Bilodeau, Brett Smith, Noah Luecke, Julia Schrandt
- Dr. Kerry O'Donnell: Providing DNA samples from multiple isolates of Fusarium oxysporum
- Dr. Tom Gordon and Peter Henry: Phylogenetic tree of F. oxysporum f. sp. fragariae, cataloging Suga negative and positive isolates in CA, providing F. oxysporum cultures

Funding

- O California Strawberry Commission,
- USDA/CDFA Specialty Crop Block Grant Program
- California Avocado Commission
- CSU-Agricultural Research Institute

