

The Diseases

Fire blight

- Erwinia amylovora
- Common name after the scorched appearance of leaves
- Pome fruits and relatives only
- Focus of this talk

Bacterial blight

- Pseudomonas syringae
- Mostly stone fruits
- Discuss this as an exception

Management

- Treatments are often similar for both diseases
- IPM approach in the landscape will almost certainly be different

The organism

Bacteria

- Visible: no?
- Body: single celled
- Nucleus: small ring
- Gene transfer: plasmids
- Cell walls: peptidoglycan
- Reproduction: division
- Dispersal: cysts, spores? (not Erwinia!)

Fungi

- Visible: yes?
- Body: multicellular
- Nucleus: multinucleate?
- Gene transfer: sex
- Cell walls: chitin
- Reproduction: fragmentation, spores
- Dispersal: spores

- Adapted to attacking flowers and new growth
- Active in spring, during bloom
- Really a problem on:
 - Pear & Asian pear
 - Quince
- Other hosts:
 - Apple
 - Loquat
 - Pyracantha
 - Cotoneaster
 - Toyon
 - Photinia
 - Sorbus

- Adapted to attacking flowers and new growth
- Active in spring, during bloom
- Really a problem on:
 - Pear & Asian pear
 - Quince
- Other hosts:
 - Apple
 - Loquat
 - Pyracantha
 - Cotoneaster
 - Toyon
 - Photinia
 - Sorbus

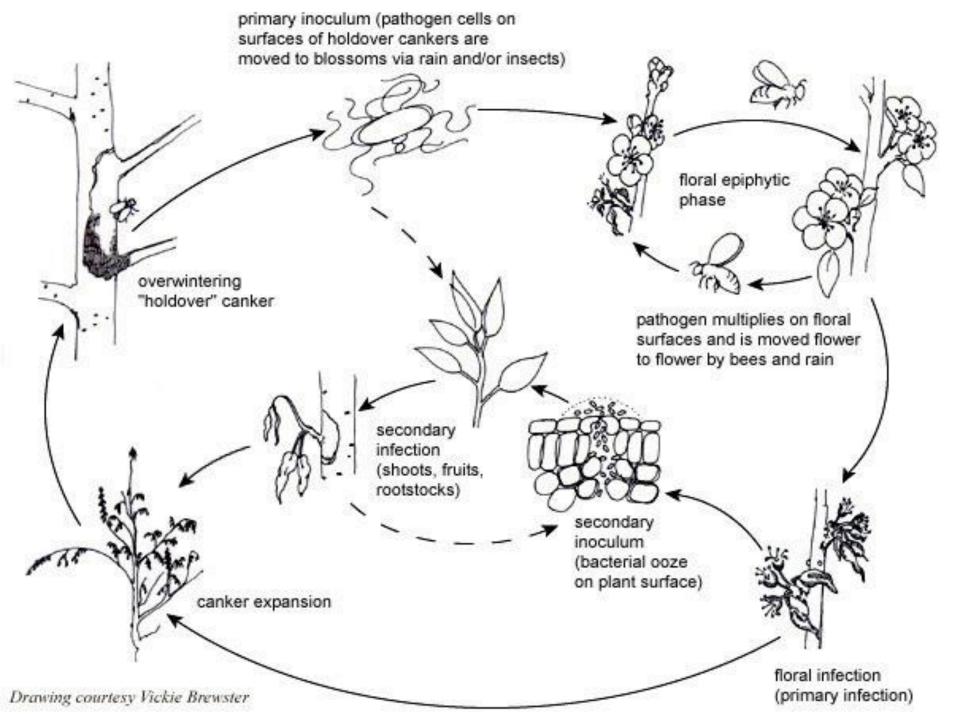
- Adapted to attacking flowers and new growth
- Active in spring, during bloom
- Really a problem on:
 - Pear & Asian pear
 - Quince
- Other hosts:
 - Apple
 - Loquat
 - Pyracantha
 - Cotoneaster
 - Toyon
 - Photinia
 - Sorbus

- Adapted to attacking flowers and new growth
- Active in spring, during bloom
- Really a problem on:
 - Pear & Asian pear
 - Quince
- Other hosts:
 - Apple
 - Loquat
 - Pyracantha
 - Cotoneaster
 - Toyon
 - Photinia
 - Sorbus

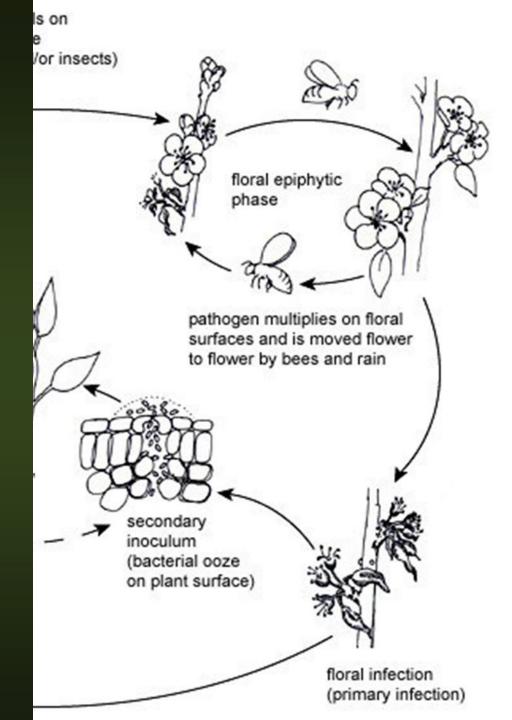
- Adapted to attacking flowers and new growth
- Active in spring, during bloom
- Really a problem on:
 - Pear & Asian pear
 - Quince
- Other hosts:
 - Apple
 - Loquat
 - Pyracantha
 - Cotoneaster
 - Toyon
 - Photinia
 - Sorbus

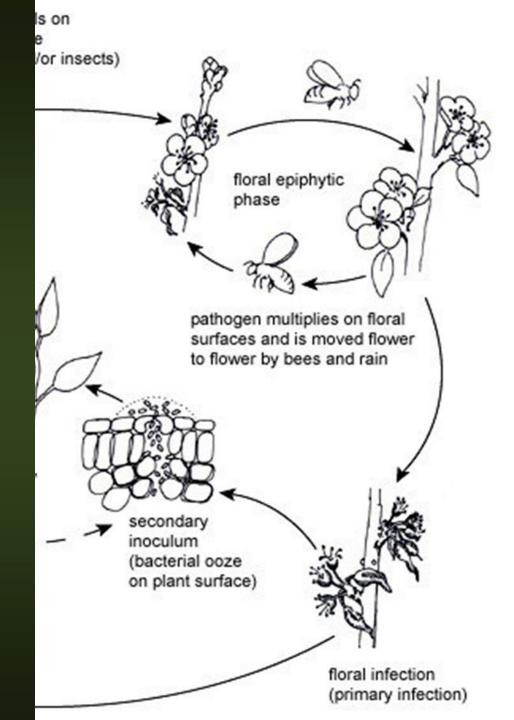
- Adapted to attacking flowers and new growth
- Active in spring, during bloom
- Really a problem on:
 - Pear & Asian pear
 - Quince
- Other hosts:
 - Apple
 - Loquat
 - Pyracantha
 - Cotoneaster
 - Toyon
 - Photinia
 - Sorbus

- Adapted to attacking flowers and new growth
- Active in spring, during bloom
- Really a problem on:
 - Pear & Asian pear
 - Quince
- Other hosts:
 - Apple
 - Loquat
 - Pyracantha
 - Cotoneaster
 - Toyon
 - Photinia
 - Sorbus

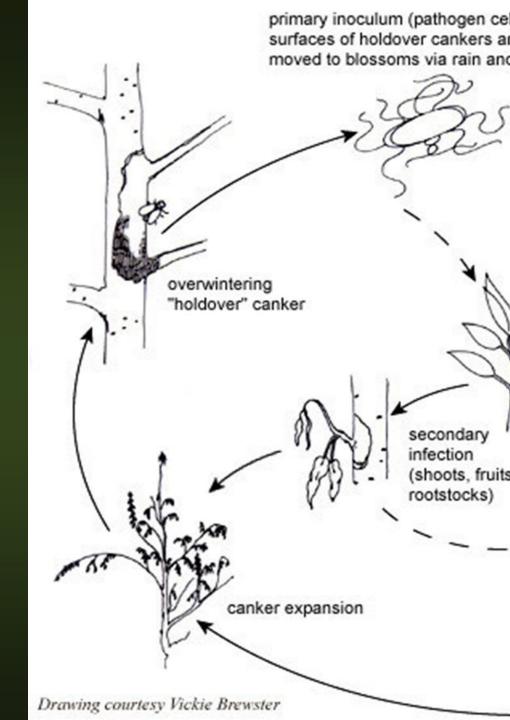


- Adapted to attacking flowers and new growth
- Active in spring, during bloom
- Really a problem on:
 - Pear & Asian pear
 - Quince
- Other hosts:
 - Apple
 - Loquat
 - Pyracantha
 - Cotoneaster
 - Toyon
 - Photinia
 - Sorbus


- Adapted to attacking flowers and new growth
- Active in spring, during bloom
- Really a problem on:
 - Pear & Asian pear
 - Quince
- Other hosts:
 - Apple
 - Loquat
 - Pyracantha
 - Cotoneaster
 - Toyon
 - Photinia
 - Sorbus


Conditions for contagion

- Several days of warm temperatures during bloom
 - Temp mediates
 - Bee flights
 - Bacterial reproduction
 - BOTH increase when it's warm
 - Extensive spread to new trees
 - 50-60°F: meh
 - 60-75°F: warning
 - 75-90°F: BOOM


Conditions for contagion

- Pathogen survives on stigmas
 - Nutrient rich
 - Point of contact for bees
- Three weeks for twig death to occur

Conditions for contagion

- Prolonged rains during leaf flush
 - Spread of cankers to new sites within the same tree
 - Some inter-tree movement may occur in storms
 - This is why pruning cankers out is important
 - Neglected trees get worse

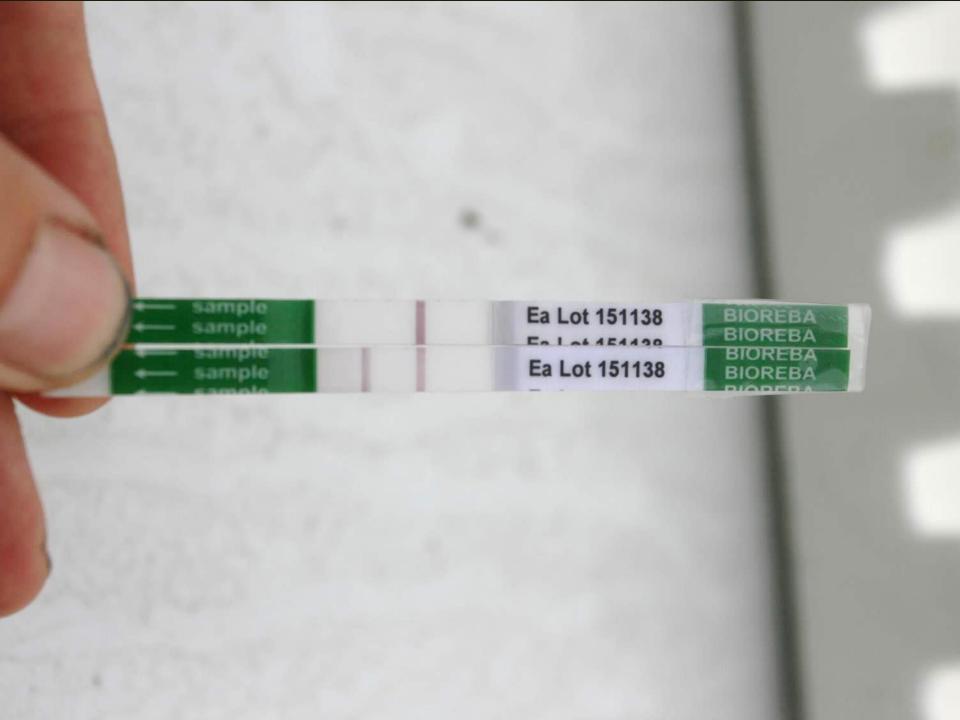
- Dead flowers
 - Sometimes baby fruit
 - Almost always black (brown in apples)
- Blackened leaves still attached
 - Infected through petiole
- Bacterial oozing
- Red streaking in phloem
- These can be challenging to find on some hosts
 - ELISA field tests

- Dead flowers
 - Sometimes baby fruit
 - Almost always black (brown in apples)
- Blackened leaves still attached
 - Infected through petiole
- Bacterial oozing
- Red streaking in phloem
- These can be challenging to find on some hosts
 - ELISA field tests

- Dead flowers
 - Sometimes baby fruit
 - Almost always black (brown in apples)
- Blackened leaves still attached
 - Infected through petiole
- Bacterial oozing
- Red streaking in phloem
- These can be challenging to find on some hosts
 - ELISA field tests

- Dead flowers
 - Sometimes baby fruit
 - Almost always black (brown in apples)
- Blackened leaves still attached
 - Infected through petiole
- Bacterial oozing
- Red streaking in phloem
- These can be challenging to find on some hosts
 - ELISA field tests

- Dead flowers
 - Sometimes baby fruit
 - Almost always black (brown in apples)
- Blackened leaves still attached
 - Infected through petiole
- Bacterial oozing
- Red streaking in phloem
- These can be challenging to find on some hosts
 - ELISA field test



- Dead flowers
 - Sometimes baby fruit
 - Almost always black (brown in apples)
- Blackened leaves still attached
 - Infected through petiole
- Bacterial oozing
- Red streaking in phloem
- These can be challenging to find on some hosts
 - ELISA field tests

- Dead flowers
 - Sometimes baby fruit
 - Almost always black (brown in apples)
- Blackened leaves still attached
 - Infected through petiole
- Bacterial oozing
- Red streaking in phloem
- These can be challenging to find on some hosts
 - ELISA field test

Planning

- Some landscapes have fire blight problems built in
- Never mix ornamental pears with other fire blight hosts
 - Cotoneaster
 - Toyon
 - Pyracantha
- Choose resistant varieties
 - UC IPM
 - Commercial grower sites (e.g: Dave Wilson Nurseries)

Planning

- Some landscapes have fire blight problems built in
- Never mix ornamental pears with other fire blight hosts
 - Cotoneaster
 - Toyon
 - Pyracantha
- Choose resistant varieties
 - UC IPM
 - Commercial grower sites (e.g: Dave Wilson Nurseries)

- Pruning
 - Spring:
 - Less time to spread
 - Clearer delineation of extent
 - Possible reinfection
 - Fall:
 - Lower contamination risk
 - Bigger cuts required
 - Disinfection of tools

- Stuff UC IPM doesn't tell you
- No fertilizer
- Flower thinning
 - But this gets done with Bordeaux mixture ...
- Blowtorch
- Resistant rootstocks (?)
 - Won't keep your tree looking good
 - Will help prevent spread into the trunk

- Sprays
 - Copper
 - Repeat every 2-3 days while humidity is high
 - 5-20 applications / year?
 - Bordeaux mixture?
 - Mix it yourself!
 - Burns stigmas

Antibiotics

- Kasugamycin (new)
- Oxytetracycline
- Streptomycin
- Spray every 2-5 days
 - Up to ~ 80% effective
- Affect all epiphytic bacteria
- Remember plasmids?
- Resistance management

- Biological bactericides
 - Bacillus subtilis
 - Rhapsody
 - Serenade
 - Streptomyces lydicus
 - Actinovate
 - Pseudomonas fluorescens
 - Blight ban
 - Others
 - Application frequency (2-5 days)
 - Landscape efficacy?

SAR's

- Acibenzinol S-methyl
- Mimics salicylic acid in plant
- Primes plant immune system
- Smaller response than antibiotic
- Lasts longer (1 week)
- Efficacy approaches antibiotics

Phosphonates

- AgriFos
- Reliant
- Aliette
- Not a stand alone treatment
- Some studies suggest near zero efficacy

- Concern about the longterm viability of pear orchards in Lake County
- We aren't orchards
 - Monoculture
 - Relevance of orchard-derived research?
 - They can get 80% control using IPM programs

Bacterial blight

- Doesn't move on bees
- Freeze specialist, entering frost damaged tissue after thaw
 - Late frosts
- Looks like abiotic frost damage
 - Not as uniform
 - More host specific
- Ice nucleator
 - Via hydrophilic & hydrophobic proteins
 - Snomax is so effective it's used by ski resorts

Bacterial Blight Management

- Similar to fireblight
 - Copper kills bacteria
 - Prune out damaged twigs
- Keep plants hydrated
- Larger host list
- Less common in Marin
- Some forms are epiphytes, not pathogens
 - Pseudomonas "Ice minus"
 - Frostban (GMO)

Landscape Summary

- Blight Mgmt fundamentals:
 - Planning
 - · Global warming
 - Pruning
- If damage to foundation plants is unacceptable
 - Remove alternate hosts and/or replant with resistant varietals
- If you wait to prune, infections may move into the trunk
 - How do you prune this out?
- Sprays work best as prophylactics
 - Cost?
 - Efficacy?
 - Do SAR compounds retain efficacy in the landscape?

Resources

- UC IPM website: http://ipm.ucanr.edu/
- Washington State University Extension: http://treefruit.wsu.edu/crop-protection/disease-management/fire-blight/
- Making Bordeaux (copper lime sulfate): <u>http://ipm.ucanr.edu/PMG/PESTNOTES/pn7481.html</u>
- Presentation will be on-line at: http://ucanr.edu/MarinIPM
- Steven Swain: svswain@ucanr.edu
 415 473 4226

