Managing Pistachio Tree Health Under Saline Conditions

Mae Culumber, Ph.D.

UC Cooperative Extension Advisor

Fresno County

Pistachios are salt tolerant....right?

- Higher threshold than other tree crops but eventual decline in tree growth and yield
- Continual tree nutrition, soil, water monitoring and management is key!

ROAD MAP for Salinity Management

What to evaluate?

- Crop salinity tolerance
- Water supply and quality
- Soil quality/structure
- Salinity management options

Salinity impact on trees

Osmotic:

- Elevated salts require moreenergy to take in waterET decreases
- -Growth limited

Specific Ion Toxicity:

-Sodium (Na⁺), Chloride (Cl⁻) and Boron (B) absorbed by roots accumulate in leaves

-Leaf burn on margins

-Nutritional disorders

Tree sensitivity increases with time

Osmotic impacts

Soil solution electrical conductivity (dS·m⁻¹)

Ferguson, Poss, Grattan, Grieve, Wang, Wilson, Donavan, Chao. 2002 JASHS 127 (2): 194-199

Specific ion damage Na⁺ and Cl⁻ ion partitioning between scion and rootstock

Ratio of rootstock (solid color) / scion (white) concentration of Na⁺ and Cl⁻ with increasing salinity

Specific ion damage B levels in leaf tissue of Kerman scion

Specific ion tissue thresholds

Specific Ion	Degree of toxicity levels in leaf tissue						
	None	Increasing	Severe				
Sodium (ppm)	< 100	100 - 200	> 200				
Chloride (%)	< 0.2	0.2 - 0.4	> 0.4				
Boron (ppm)	< 300	300 - 700	> 800				

Critical levels of specific ions in pistachio leaf tissue (July/August tissue sample prior to harvest)

Source Adapted from Ayers and Westcot 1985.

Yield impacts

Nut shrivel

Sunburn

Photos: Themis Michailides

Non-splits

11/27/2017

Yield Impacts

Summary of salinity impacts on Pistachio

- Osmotic effects > specific ion damage over time
- Difference among rootstocks in how they partition Na⁺, Cl⁻
- Established trees can be irrigated with saline water up to 8.4 dS/m
- From planting to maturity critical limit 6 dS/m
- Rootstock tolerance UCBI > PGI UCBI: 100 lb (1.4%) decline per 1 dS/m >6 PGI: 236 lb (3.0%) decline per 1 dS/m >6

UC University of California Cooperative Extension CE Pistachio Salinity Studies

http://ucanr.edu/sites/psalinity

Pistachios are salt tolerant but....

4.5 to 6 dS/m EC irrigation water may not be sustainable

6 to 10 inchés of effective rainfall or fresh water winter irrigation needed for efficient leaching every one to two years

ROAD MAP for Salinity Management <u>What to evaluate?</u>

- Crop salinity tolerance
- Water supply and quality
- Soil quality/structure
- Salinity management options

-Amendment and leaching dependent on quality of water available

Soil salinity amendment and leaching calculations

Cnvrsn-Infilt-LeachCalc

http://cekern.ucanr.edu/Irrigation_Manag ement/ANALYTICAL_CONVERSIONS_ AND_LEACHING_CALCULATIONS/

Included in your files on thumbdrive received at end of course.

Soil Quality EC is concentration of

salts in solution: dS/m

- Irrigation water: ECw
- Soil water: ECe

Analy	Analysis:								
	Well 1	Aque	Well	2					
рН	8.4	7.4	7.4						
EC_w	1.0	0.5	5.8	dS/m					
Ca	0.5	1.2	26.5	meq/l					
Mg	0.1	1.0	15.3	meq/l					
Na	9.6	2.5	23.9	meq/l					
HCO	4.2	1.6	1.5	meq/l					
CO ₃	1.0	<0.1	<0.1	meq/l					
CI	4.6	2.0	36.9	meq/l					
SO ₄	0.1	0.9	24.0	meq/l					
B	0.7	0.3	11.0	mg/l					
NO ₃	5.2	0.6	8.0	mg/l					
SAR	17.5	2.4	5.4						
SAR	adj 16.6								
	-	2012	23						

Sodicity: High SAR with low Ec_w = poor infiltration

Normal or saline: low SAR with low or high EC_w= little to no infiltration problem

Soil ECe: average 7.1 dS/m Low EC, high SAR ground water

Calculate Amendment Rates

Calculate Amendment Rates

	Pounds amendment per acre-foot/water											
meq Ca/l	gypsum 100% pure	sulfuric acid (100% pure)	lime sulfur (23.3 % S)	nitro* sul (20% N, 40% S)	urea-sulfuric acid* (10% N, 55% acid)							
1.0	234	133	192	50	107							
2.0	468	266	383	100	214							
3.0	702	399	576	150	321							
4.0	936	532	768	200	428							
5.0	1170	665	959	250	535							
6.0	1404	798	1151	300	642							

* One mole of ammonium is assumed to replace two moles of sodium.

Calculate Amendment Rates

Broadcasting or injecting gypsum into the water is only necessary if: Sodium > 5*Calcium

Gypsum is a salt adds to osmotic pressure that limits water uptake through the roots

Calculate the leaching fraction

	А	В	С	D	E	F	G	Н	1	J	K	L	Μ	N	0	Р	
1	CALCU	LATING I	LEAC	HING D	EPTH 1	IO ACI	HIEVE	DESIF	RED								
2		SALINIT	IY FOF	R SOIL	RECLA	MATIC	N										
3		(Using fres	h water	with EC	<= 1 mm	ho/cm)											
4																	
5			CALCU	JLATING	SAR, ES	P AND I	DESIRED	LEAC	HING DE	РІН				Sprinkli	ng / Drip to		
6		Sample	Da	ata Requi	red from S	Soil Extra	act Analys	is						Leach	Rootzone		
7	EXAMPLE	Thickness	(%)		(d S/m)		(meq/l)					Desired	Dsrd/Orig	(ft water /	(inch water		
8	Depth	(inches)	SP	pH	EC	Ca	Mg	Na	SAR	ESP	EC/ESP	Salinity	EC	ft soil)	for sample)		
9	0-1'	12	40	7.9	5.5	34.2	4.6	21.7	4.9	5.7	1.0	3	0.55	0.28	3.30		
10	1-2'	12	45	8.0	6.7	29.9	4.3	39.6	9.6	11.4	1.7	3	0.45	0.34	4.02		
11	2-3'	12	45	8.0	7.3	25.1	4	51.8	13.6	15.8	2.2	3	0.41	0.37	4.38		
12									TO	TAL DE	PTH OF <mark>L</mark>	EACHING	REQUIRE	D (inches):	11.70		
13																	
14			ENT	ER Y	OUR	DATA	BEL	ow.						Sprinkli	ng / Drip to		
15	YOUR	Sample	Da	ata Requi	red from S	Soil Extra	act Analys	is						Leach	Rootzone		
16	SOIL	Thickness	(%)	-	(d S/m)		(meq/l)					Desired	Dsrd/Orig	(ft water /	(inch water		
17	Depth	(inches)	SP	pН	EC	Са	Mg	Na	SAR	ESP	EC/ESP	Salinity	EC	ft soil)	for sample)		
18									######	#DIV/0!	#DIV/0!		#DIV/0!	#DIV/0!	#DIV/0!		
19									######	#DIV/0!	#DIV/0!		#DIV/0!	#DIV/0!	#DIV/0!		
20									######	#DIV/0!	#DIV/0!		#DIV/0!	#DIV/0!	#DIV/0!		
21									TO	TAL DE	PTH OF L	EACHING	REQUIRE	D (inches):	#DIV/0!		

http://cekern.ucanr.edu/Irrigation_Management/ANALYTICAL_CONVERSIONS_AND_LEA CHING_CALCULATIONS/

University of California Cooperative Extension Kern County

Mass balance leaching for ponding vs sprinkling or intermittent ponding

SPRINKLI	NG RECL	AMATION								
Desired										
Rootzone	*Inches of	*Inches of water/foot of rootzone								
Salinity	Required	Required to leach initial salinity of::								
dS/m	4	4 8 12 16								
2	3.6	7.2	10.8	14.4						
4	0	3.6	5.4	7.2						
6	0	2.4	3.6	4.8						

*Applicable for all irrigation waters less than 1.0 dS/m. Adapted from Hoffman, G.J. 1996. "Leaching fraction and root zone salinity control." Agricultural Salinity Assessment and Management. ASCE. New York, N.Y. Manual No. 7:237-247

FIX: Apply appropriate depth of leaching to achieve rootzone salinity target.

> About 11" to go from EC = 6 to EC = 3 to a depth of 3 feet.

Soil texture and depth of leaching water requirement

Calculate depth of water for reclamation

Depth	SP	рН	EC	Ca	Mg	Na	SAR	ESP
0-1'	40	7.9	5.5	34.2	4.6	21.7	4.9	5.7
1-2'	45	8.0	6.7	29.9	4.3	39.6	9.6	11.4
2-3'	45	8.0	7.3	25.1	4	51.8	13.6	15.8
Av	verage s	6.5 d	S/m			-		

Required Leaching Ratio* (depth water/depth soil) = K / (Desired EC/Original EC)

Use K factor of 0.15 for sprinkling, drip or repeated flooding. Use 0.3 for continuous ponding. Boron use 0.6 leaching coefficient 3x greater than other salts

* Assumes leaching water 1.0 dS/m

Calculate depth of water for reclamation

Required Leaching Ratio (depth water/depth soil) = 0.15 / (Desired EC/Original EC)

(K factor of 0.15 for sprinkling, drip or repeated flooding. Use 0.3 for continuous ponding, Boron use 0.6 leaching coefficient 3x greater than other salts

Required Leaching Ratio (depth water/depth soil) = 0.15/(3/6.5) = 0.325

Actual depth of leaching water = 0.325 * 3 feet = 0.98 feet

Calculated feet to hours

- Gallons to apply = depth of water (inches) x (trees per acre) X (0.622 gal/in. ft²)
- Depth of water inches = 0.98 feet x 12 inches per foot = 11.8 inches
- Acre inches per hour = (trees per acre) x (gph output per tree) ÷ 27,154 gallons per acre-inch)
- 128 trees x 8 gph ÷ 27,154 gallons = 0.038 acre in/hr

11.8 inches ÷ 0.038 in/hr = 310 hours or 13 days

Table 3 CONCENTRATION FACTORS (X)FOR PREDICTING SOIL SALINITY(ECe)1 FROM IRRIGATION WATERSALINITY (ECw) AND THE LEACHINGFRACTION (LF)

	Applied	
	Water	Concen-
Leaching	Needed	tration
Fraction	(Percent of	Factor
(LF)	ET)	(X)
0.05	105%	3.2
0.1	111%	2.1
0.15	118%	1.6
0.2	125%	1.3
0.25	133%	1.2
0.3	143%	1
0.4	167%	0.9
0.5	200%	0.8
0.6	250%	0.7
0.7	333%	0.6
0.8	500%	0.6

Applied water needed = 1/(1-LF)

Ayers, R.S., D.W. Westcot. Water Quality for Agriculture. FAO Irrigation and Drainage Paper 29 Rev. 1, Reprinted 1989, 1990 niversity of California http://www.fao.org/DOCREP/003/T0234E/T0234E/00.htm

Determining Leaching Fraction to maintain desired rootzone salinity

Leaching fraction required over long-term irrigation with a given salinity of water to obtain a desired rootzone salinity. (Ignoring precipitation/dissolution reactions in the soil.)

Irrigation	1			_	_		
Water EC	1	Desire	ed Avera	age Roc	stzone E	-Ce	
(dS/m)	1	2	3	4	5	6	7
0.1	0.01	0.00	0.00	0.00	0.00	0.00	0.00
0.4	0.07	0.02	0.01	0.01	0.01	0.00	0.00
0.8	0.23	0.07	0.04	0.02	0.02	0.01	0.01
1.2	0.44	0.14	0.07	0.05	0.03	0.02	0.02
1.6		0.23	0.12	0.07	0.05	0.04	0.03
2.0		0.33	0.17	0.10	0.07	0.05	0.04
2.4		0.44	0.23	0.14	0.10	0.07	0.06
2.8			0.29	0.18	0.13	0.09	0.07
3.2			0.36	0.23	0.16	0.12	0.09
3.6			0.44	0.27	0.19	0.14	0.11
4.0				0.33	0.23	0.17	0.13
4.4				0.38	0.26	0.20	0.15
4.8				0.44	0.30	0.23	0.18
5.2					0.35	0.26	0.20
5.6					0.39	0.29	0.23
6.0					0.44	0.33	0.25
6.4						0.36	0.28

SOLVING FOR DESIRED LEACHING FRACTION DIRECTLY:

Regressing the rootzone salinity concentration factors in FAO29 and rearranging to solve for Leaching Fraction (LF):

LF = 0.326 (Desired ECe/ECirr)[^] -1.64

Dormant Season Salinity Management:

Replenish deep soil moisture, improve water penetration and leach enough salt for efficient use of water next season

https://www.luxviz.com/html-photography/landscape-photography-gallery-asia-bali.html

Salinity Management Timeline:

November:

<u>Sample</u> irrigation water and soil from 1' to 5' Determine EC, pH, Na⁺ (SAR), B

Calculate amendments: needed if SAR > 5x EC

Sodicity then Salinity!

<u>Calculate leaching fraction</u>: Determine depth of water (inches per foot depth soil) needed to achieve desired salinity Determine timeline for completing leaching program

November to March:

Leach in dormant season

1st fill profile to field capacity (3-6 inches over 3-4 days), then 2-4 days drainage.....then begin leaching applications **March**:

<u>Re-sample</u> irrigation water and soil from 1' to 5' to determine effectiveness of applied leaching and starting point for growing season

Tree health in saline conditions summary.....

- Pistachio is more tolerant than other tree crops but....
- Elevated salinity degrades soil structure, decreases water uptake, stunts growth, eventually accumulates salt in tissues and decreases nut crop quality

Tree health in saline conditions summary.....

- Keep soil salt levels below 4.5 dS/m
- Soil and water sample
- First address sodicity then salinity

 Fall apply gypsum before rain and leaching
- Best approach: leach salts in dormant period -lowest ET and maximum salt accumulation post season
- If possible complete leaching before spring root flush
 University of California Agriculture and Natural Resources

