Small and Large Bug Damage in Nut Crops

Kent Daane University of California, Berkeley kdaane@ucanr.edu

Houston Wilson University of California, Riverside houston.wilson@ucr.edu

Outline

Bug Species Small and Large bugs Leaffooted bug Damage Economic Injury Seasonal Biology Overwintering Biology Controls **Biological Control** Insecticides & timing Monitoring

Bug Species: Small Bug Pests

Calocoris norvegicus

Phytocoris relativus

Lygus hesperus

Photo: web

Pistachio Small Bug Pests

Phytocoris (*Phytocoris relativus and Phytocoris californicus*)

Pistachio Small Bug Pests

Phytocoris (*Phytocoris relativus and Phytocoris californicus*)

Stink bugs (Pentatomidae)

Say's Stink Bug (Chlorochroa sayi) Uhler's Stink Bug (Chlorochroa uhleri)

Stink bugs (Pentatomidae)

Green Stink Bug (Chinavia (Acrosternum) hilare) Red Shouldered Stink Bug (Thyanta pallidoverins)

Stink Bug Developmental Stages

Green Stink Bug (Chinavia (Acrosternum) hilare) <section-header><section-header>

Clustered 1st – 2nd instars

Stink Bug Developmental Stages

Green Stink Bug (Chinavia (Acrosternum) hilare)

Stink Bug Developmental Stages

Green Stink Bug (Chinavia (Acrosternum) hilare)

Leaffooted Bug - Adult

UC Statewide IPM Project © 2000 Regents, University of California

Leaffooted Bug - Egg hatch

Leaffooted Bug - Eggs and nymphs

Photo: RE Rice

Leaffooted Bug - Nymphs and adult

Photo: RE Rice

Leaffooted Bug - wing span

Photo: web

<u>Outline</u>

Bug Species Small and Large bugs Leaffooted bug Damage Economic Injury Seasonal Biology **Overwintering Biology**

Controls

Biological Control Insecticides & timing Monitoring

Bug Damage - Mouthparts

general seed feeders

needle-like mouthparts

strong mouthparts = deep probing

stink bug's mouthpart

April-May "Dropped nuts"

"Damage signal" from insects probably large bug at this stage

Kernel necrosis and "Stigmatomycosis"

Kernel necrosis and "Stigmatomycosis"

Role in Botryosphaeria dothidea (Bd)

Bd on field-collected bugs (ca. 25,000)

Lygus (0.4%)

Redshouldered SB (0.35%)

Rhophalids (0.2%)

Calocoris (0.05%)

Flat green SB (0.02%)

False chinch bug (1.0%)

Phytocoris (0.05%)

Leaffooted bug (0.14%)

Uhler's SB (no sample)

Role in Botryosphaeria dothidea (Bd)

30

•••

Carry Bd spores Create punctures for entrance Seasonal development & damage

Bug Seasonal Pistachio & Almond Development Damage

Bug density
Crop load
Bug size
Shell hardness

2) Bug size - Pistachio cage study with RSSB

3) Crop load & compensation

4) Shell hardness - feeding period

<u>Outline</u>

Bug Species Small and Large bugs Leaffooted bug Damage Economic Thiumy

Economic Injury Seasonal Biology Overwintering Biology Controls

Biological Control Insecticides & timing Monitoring

Leaffooted Bug Presence & Density

Leaffooted Bug Presence & Density

Leaffooted Bug Presence & Density

Overwintering aggregations & biology

LFB's OW survival - Development stages?

Survival (%)

Winter Monitoring for Leaffooted Bugs

Overwintering Temperatures?

Overwintering Temperatures?

Winter temperature Shelter from cold Food for adults

<u>Outline</u>

Bug Species Small and Large bugs Leaffooted bug Damage Economic Injury Seasonal Biology Overwintering Biology Controls **Biological Control** Insecticides & timing Monitoring

http://www.youtube.com/watch?v=hFjctgCKV6Y

Conclusions: If large bugs numbers are recorded, insecticides remain most reliable option. But remember (1) crop load compensation, (2) bug size, and (3) mid- to late-season shell-hardening,

Pyrethroids (April-May) are often used for bugs. Materials are broad-spectrum, David Haviland suggests these sprays are connected to Gill's mealybug problems

