

Department of LAND, AIR AND WATER RESOURCES University of California, Davis Climate Change - Sustainable Agriculture

Climate Change • Sustainable Agriculture Environmental Quality • Landscape Processes

Site specific nitrogen management in processing tomatoes

Daniel Geisseler

Nutrient Management Specialist, UC Davis

South Sacramento Valley Processing Tomato Production Meeting, Woodland January 11, 2018

Data collection in commercial fields in 2016

- Sites: 2 sites near Woodland
 - 3 sites near Stockton
 - 1 site near Huron
- Data: Canopy development (infrared camera)
 - ET estimates from Tule stations
 - N uptake

(repeated plant sampling)

Expected N uptake

⇒ N in tomatoes: 2.99 lbs/ton

⇒ N in vines: 33% of total N

For a 55-ton total yield:

Expected N requirements

- Expected yield: 55 tons/acre
- Expected N uptake: 246 lbs/acre
 2.99 lbs/ton; 67% of total N in fruits
- N use efficiency: 90%
- Total N requirement: 274 lbs/acre (from all sources)

N sources at field site

- No nitrate in irrigation water
- Residual soil nitrate:
 - − 1st foot: 13 ppm ⇒ 45.4 lbs/acre
 - -2^{nd} foot: 7.7 ppm \Rightarrow 27 lbs/acre
- Assumption: 50% of nitrate in 1st foot and 90% in 2nd foot are available
- ⇒ Available soil nitrate: 47 lbs/acre
- ⇒ Fertilizer N needed (incl. starter):
 225 lbs/acre

N budget for UC Davis trial

N sinks and sources		lbs N/acre
N uptake	246 lbs/acre	
N efficiency	90%	
N requirement		274
N in irrigation water	0 ppm	
Residual soil nitrate	47 lbs/acre	
N credits		47
Fertilizer application rate		227

Residual soil nitrate

Lazcano et al., 2015

N budget example I

N sinks and sources		lbs N/acre
N uptake	246 lbs/acre	
N efficiency	90%	
N requirement		274
N in irrigation water	0 ppm	
Residual soil nitrate	120 lbs/acre	
N credits		120
Fertilizer application rate		154

Nitrate in irrigation water

1 acre-inch of water with a nitrate-N concentration of 1 ppm contains 0.227 lbs N/acre

Example:

- Irrigation water: 10 ppm nitrate-N
- Seasonal irrigation: 22 inches

⇒ N in irrigation water: 50 lbs/acre

N budget example II

N sinks and sources		lbs N/acre
N uptake	246 lbs/acre	
N efficiency	90%	
N requirement		274
N in irrigation water	50 lbs/acre	
Residual soil nitrate	120 lbs/acre	
N credits		170
Fertilizer application rate		104

Replicated trial at UC Davis

- 3 nitrogen treatments:
 - N_175: Optimal N minus 50 lbs N/acre
 - N_225: Optimal N
 - N_275: Optimal N plus 50 lbs N/acre
- Irrigation in all treatments was 100% ET
- 5 replicates
- Plot size: 3 beds x 200 feet

Trial management

- Transplanting date: 05/01/2017
- Fertilization:
 - Starter: 30 gal/acre of 8-24-6, Zn
 - 5 weekly fertigations of UAN between
 06/01 and 06/29
 - Two applications of K-thiosulfate in July (total of 100 lbs K₂O/acre)
- Harvest date: 08/25/2017

Fertilization program

Residual soil nitrate not included

Marketable yield

- Average marketable yield: 58 tons/acre
- No statistically significant differences among treatments

Why are there no treatment effects?

- We may have overestimated N uptake
- We did not account for N mineralization during the growing season

Measured N uptake

Treatment	N in	N in fruits		N in vines	
	(lbs/ton)	(lbs/acre)	% of total	(lbs/acre)	(lbs/acre)
N_175	2.59	148	39%	94	242
N_225	2.99	166	38%	102	269
N_275	3.07	187	42%	133	319

Soil N mineralization

Incubation: 10 weeks at 77 °F and optimal moisture content

- 1.8% soil organic matter
- pH_w 7.6

Soil N mineralization

- Assumption: annual N mineralization 75-125 lbs/acre
- N mineralized during growing season: 30-50 lbs/acre

Conclusions

- At common N application rates, plants take up more N than needed (luxury consumption)
- Root access to nitrate above the drip line is a rough estimate
- Even in soils with a low soil organic matter content, N mineralization during the season contributes to N supply

Acknowledgement

- CDFA Fertilizer Research and Education Program (FREP)
- California Tomato Research Institute
- UC ANR California Institute for Water Resources
- Growers
- Gene Miyao, Brenna Aegerter, Tom Turini, Michael Cahn, Tim Hartz
- Israel Herrera and the Russell Ranch field team
- Kelley Liang, Irfan Ainuddin, Patricia Lazicki, Ken Miller