

Basic Soil and Plant Nutrition

UC Master Gardeners of Monterey and Santa Cruz February 2018

University of **California** Agriculture and Natural Resources

Objectives

- Knowledge of soil composition
- Knowledge of soil texture/pH
- Knowledge of the 16 essential and 3 beneficial nutrients used by plants
- Know the difference between mobile and immobile nutrients
- Be able to use "Key to Nutrient Disorders" handout

University of **California** Agriculture and Natural Resources

Root Requirements from Soil

- Soil must be sufficiently moist to allow roots to take up and transport nutrients
- The pH of the soil must be within a certain range for nutrients to be release-able from the soil particles
 - Vegetables, grasses, most ornamentals 5.8 6.5
 - Tomatoes 6.2 6.8
 - Cucumber 6.0 7.0
 - Lettuce 6.0 6.5

University of California

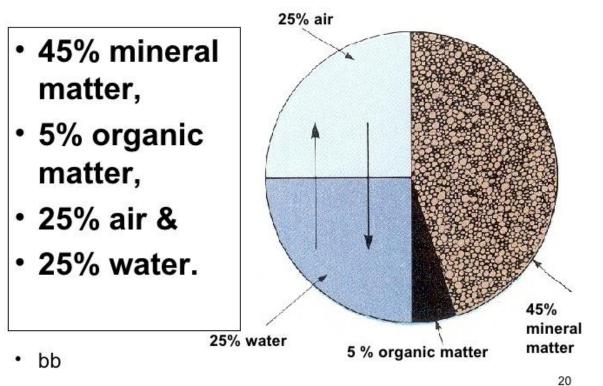
Agriculture and Natural Resources

Root Requirements from Soil

- The temperature of the soil must fall within a certain range for nutrient uptake to occur
 - Germination Temperature Requirements
 - Although some plant species' seeds require a temperature as low as 50 degrees Fahrenheit to germinate, a wide variety of commonly grown perennial plants and vegetable crops have optimal seed germination temperatures between 65 and 80 degrees Fahrenheit.

University of **California** Agriculture and Natural Resources

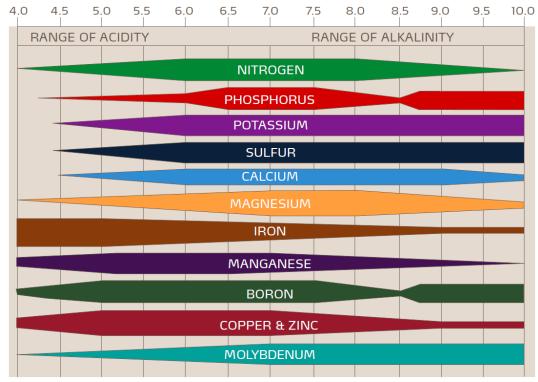
Temperature


- Absorption of nutrients is affected by change in temperature. In general, an increase in temperature results in an increase in the absorption of nutrients up to a certain optimum level.
- At very high temperature the absorption is considerably inhibited.

University of **California** Agriculture and Natural Resources

Soil Composition

Composition of a Good Planting Soil:



University of **California** Agriculture and Natural Resources

Soil pH

pH - a figure expressing the acidity or alkalinity of a solution on a logarithmic scale on which 7 is neutral, lower values are more acid, and higher values more alkaline.

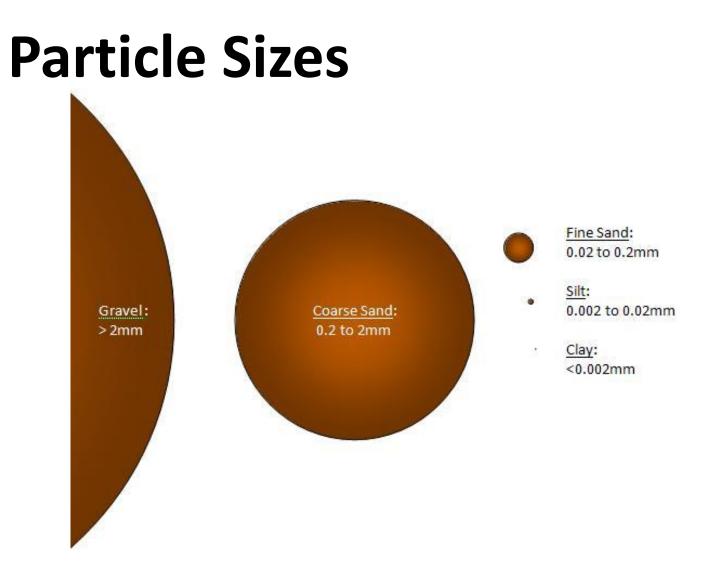
The Influence of Soil pH on Nutrient Availability

University of **California** Agriculture and Natural Resources

Soil pH and Nutrient Availability

- Extremes in pH impact plant growth rates
 - Highly acid soils
 - Aluminum and Manganese
 - More available/can be toxic
 - Calcium, Phosphorus and Magnesium
 - Less available for plant uptake
 - Alkaline soil
 - Phosphorus and micronutrients
 - Less available

University of **California** Agriculture and Natural Resources


Soil Texture

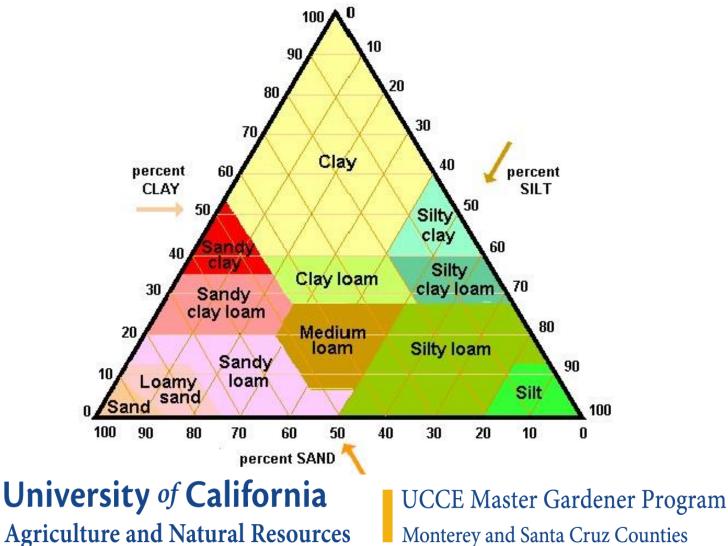
- The look and feel of a soil is referred to as SOIL TEXTURE and is determined by the size and type of particles that make up the soil (including the organic but mostly referring to the inorganic material).
- The size of the ex-rock pieces (now the inorganic soil particles) varies substantially, from large bits of gravel to much, much smaller clay pieces. How you refer to the soil particles is actually based on their size:
 - Gravel particles greater than 2 mm in diameter
 - Coarse sand particles less than 2 mm and greater than 0.2 mm in diameter
 - Fine sand particles between 0.2 mm and 0.02 mm in diameter
 - Silt particles between 0.02 mm and 0.002 mm in diameter
 - Clay particles less than 0.002 mm in diameter

University of California

Agriculture and Natural Resources

University of California

Agriculture and Natural Resources


Relating Soil Texture to Soil Function

- Texture effects important soil functions:
 - Total amount of pore space
 - Govern processes of water and air movement through soil
 - Ability to retain nutrients (CEC)
 - Accumulate more organic matter

University of **California** Agriculture and Natural Resources

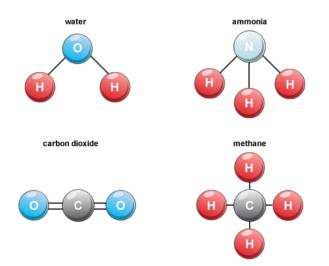
Soil Texture Pyramid

Monterey and Santa Cruz Counties

Element Definition

 An element is a substance consisting of atoms which all have the same # of protons, ie the same atomic number

17 18 Symbol He C Solid Name Atomic Mass Metals Nonmetals Helium 4.002602 Hg Liquid Alkaline earth metal **Fransition** Voble gase lkali meta oor meta Lanthanoids Ne Н Gas Neon 20.1797 Actinoids Rf Unknown 12 Mg 3 Na Si CI Ar Argon 39.948 22 **Ti** Titanium 47.887 Fe Iron 55.845 Cobalt 58.93319 Ni Cu Copper 63.546 Zn Zino 65.38 Kr Ca Sc V Cr 4 K Mn Ga Ge As Se Calciun 40.078 Scandium 44.955912 Vanadium 50.9415 Chromium 51,9961 Manganese 54,938045 Nickel 58.6934 Krypton 83,798 38 40 42 44 45 54 Zr Zirconiu 91.224 Pd Palladiun 108.42 Ag Silver 5 Rb Sr Nb Мо Тс Ru Rh Cd In Sn Sb Те Xe Molybde 95.96 Technetiur (97,9072) Ruthenium 101.07 56 74 75 76 78 79 86 6 Cs Ва Hf Та W Re Os lr. Pt Au Hg TL Pb Bi Po At Rn 57-71 Tantalum 180.94788 Tungste 183.84 Rheniun 188.207 Osmiun 190.23 Iridium 192.21 Platinun 195.084 88 105 106 107 108 109 110 111 117 112 113 114 115 118 Ra 7 Fr Sg Bh Hs Mt Ds Rg Uus 89–103 For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/ 66 62 Pr Nd Yb Ce Pm Sm Eu Gd Tb Dy Но Er Tm Lu Promet (145) Praseodymia 140.90765 Samariur 150.38 Europiur 151.984 Gadolini 157.25 Terbium 158.92535 Dyspro. 162.500 Erbium 167.259 Thulium 168.9342 Ytterbiu 173.054 Neodym 144.242 Holmium 164.93032 Lutetium 174.9688 Ptable 103 89 90 91 92 93 94 95 97 100 101 102 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr


Periodic Table of Elements

University of **California** Agriculture and Natural Resources

Compound Definition

In chemistry, a compound is a substance that results from a combination of two or more different chemical <u>elements</u>, in such a way that the atoms of the different elements are held together by chemical bonds that are difficult to break.

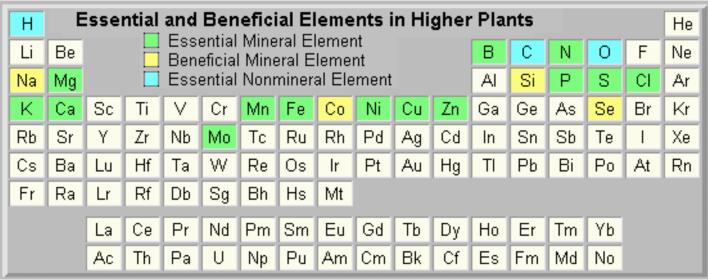
University of California

Agriculture and Natural Resources

Plant Nutrition Essential Elements

In defining the concept of an **essential element**, a more precise set of criteria were established by Arnon and Stout in 1939, who stated that an essential element:

- Must be required for the completion of the life cycle of the plant
- Must not be replaceable by another element
- Must be directly involved in plant metabolism, that is, it must be required for a specific physiological function



University of **California** Agriculture and Natural Resources

Types of Essential Elements

- Macronutrients are required in large quantities by plants
- Micronutrients are required in trace quantities by plants
- Beneficial elements, elements which promote plant growth in many plant species but are not absolutely necessary for completion of the plant life

University of **California** Agriculture and Natural Resources

Macronutrients

Macronutrients are needed in relatively large amounts by plants.

Element	Symbol	Source	Form Used
Oxygen	0	Air/Water	H ₂ O
Hydrogen	Н	Air/Water	H ₂ O
Carbon	С	Air/Water	CO ₂
Nitrogen	Ν	Soil	NO ₃ ⁻ , NH ₄ ⁺
Phosphorus	Ρ	Soil	H ₂ PO ₄ & HPO ₄ ²⁻
Sulfur	S	Soil	SO ₄
Potassium	К	Soil	K ⁺
Calcium	Са	Soil	Ca ₂ ⁺
Magnesium	Mg	Soil	Mg ²⁺

University of **California** Agriculture and Natural Resources

Micronutrients

Micronutrients are needed in relatively small amounts by plants

Element	Symbol	Source	Form Used
Iron	Fe	Soil	Fe ²⁺
Manganese	Mn	Soil	Mn ²⁺
Boron	В	Soil	$H_2BO_3^{-1}$
Molybdenum	Мо	Soil	MoO ₄ ²⁻
Copper	Cu	Soil	Cu ²⁺
Zinc	Zn	Soil	Zn ²⁺
Chlorine	Cl	Soil	Cl⁻

University of **California** Agriculture and Natural Resources

Beneficial Nutrients

- Beneficial elements, elements which promote plant growth in many plant species but are not absolutely necessary for completion of the plant life cycle:
 - Sodium (Na) is involved in osmotic (water movement) and ionic balance and is required by some plants.
 - Cobalt (Co) is required for nitrogen fixation in legumes and in root nodules of nonlegumes because it is a component of enzymes essential for nitrogen fixation. Deficient levels could result in nitrogen deficiency symptoms.
 - Silicon (Si) is a component of cell walls and is essential to some types of grass.

University of California

Agriculture and Natural Resources

Mobility of Nutrients

Mobile	Symbol	Immobile	Symbol
Phosphorus	Р	Boron	В
Nitrogen	Ν	Calcium	Ca
Molybdenum	Мо	Sulfur	S
Magnesium	Mg	Iron	Fe
Potassium	K	Maganese	Mn
Cloride	Cl	Zinc	Zn

University of **California** Agriculture and Natural Resources

Deficiency Symptoms - N

- General chlorosis.
- Chlorosis progresses from light green to yellow.
- Entire plant becomes yellow under prolonged stress.
- Growth is immediately restricted and plants soon become spindly and drop older leaves.

University of **California** Agriculture and Natural Resources

Deficiency Symptoms - P

- Leaves appear dull, dark green, blue green, or redpurple, especially on the underside, and especially at the midrib and vein.
- Petioles may also exhibit purpling. Restriction in growth may be noticed.

Merlot with advanced P deficiency symptoms.

University of **California** Agriculture and Natural Resources

Deficiency Symptoms - K

- Leaf margins tanned, scorched, or have necrotic spots (may be small black spots which later coalesce).
- Margins become brown and cup downward.
- Growth is restricted and die back may occur.
- Mild symptoms appear first on recently matured leaves.

University of **California** Agriculture and Natural Resources

Deficiency Symptoms - Ca

- Growing points usually damaged or dead (die back).
- Margins of leaves developing from the growing point are first to turn brown.

University of **California** Agriculture and Natural Resources

UCCE Master Gardener Program Monterey and Santa Cruz Counties

Deficiency Symptoms - Mg

- Marginal chlorosis or chlorotic blotches which later merge.
- Leaves show yellow chlorotic interveinal tissue on some species, reddish purple progressing to necrosis on others.
- Younger leaves affected with continued stress.
- Chlorotic areas may become necrotic, brittle, and curl upward.
- Symptoms usually occur late in the growing season.

University of **California** Agriculture and Natural Resources

Deficiency Symptoms - Cu

- Leaves wilt, and curl become chlorotic, then necrotic.
- Wilting and necrosis are not dominant symptoms.

University of **California** Agriculture and Natural Resources

Deficiency Symptoms - Fe

- Distinct yellow or white areas appear between veins, and veins eventually become chlorotic.
- Symptoms are rare on mature leaves.

University of **California** Agriculture and Natural Resources

Deficiency Symptoms - Mn

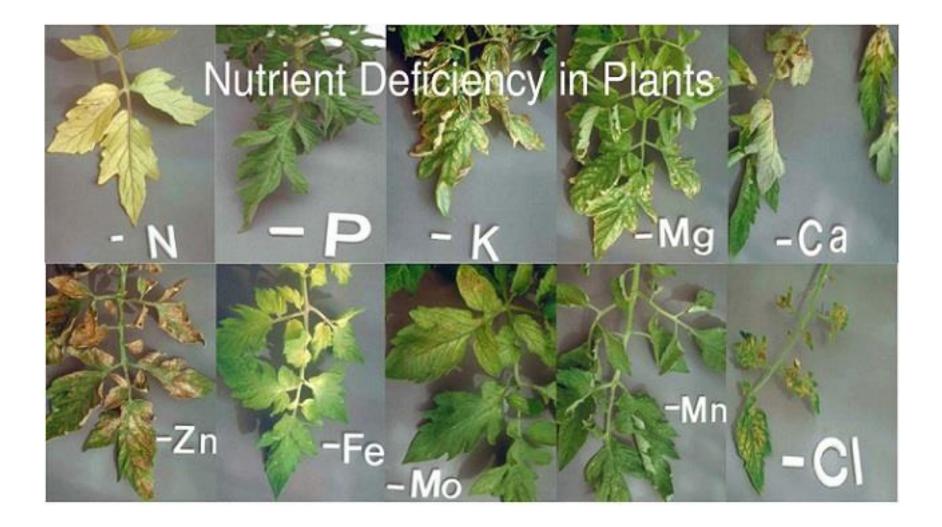
- Chlorosis is less marked near veins.
- Some mottling occurs in interveinal areas.
- Chlorotic areas eventually become brown, transparent, or necrotic.
- Symptoms may appear later on older leaves.

University of **California** Agriculture and Natural Resources

Deficiency Symptoms - Zn

- Leaves may be abnormally small and necrotic.
- Internodes are shortened.

University of **California** Agriculture and Natural Resources


Deficiency Symptoms - B

- Young, expanding leaves may be necrotic or distorted followed by death of growing points.
- Internodes may be short, especially at shoot terminals.
- Stems may be rough, cracked, or split along the vascular bundles.

University of **California** Agriculture and Natural Resources

University of **California** Agriculture and Natural Resources

Glossary

- Atom the smallest component of an element having the chemical properties of the element, consisting of a nucleus containing combinations of neutrons and protons and one or more electrons bound to the nucleus by electrical attraction; the number of protons determines the identity of the element.
- Atomic Number the number of positive charges of protons in the nucleus of an atom of a given element, and therefore also the number of electrons normally surrounding the nucleus
- Cation Exchange Capacity (CEC) is the total capacity of a soil to hold exchangeable cations.
 CEC is an inherent soil characteristic and is difficult to alter significantly. It influences the soil's ability to hold onto essential nutrients.
- Chlorosis is a yellowing of leaf tissue due to a lack of chlorophyll. Possible causes
 of chlorosis include poor drainage, damaged roots, compacted roots, high alkalinity, and
 nutrient deficiencies in the plant.
- Coalesce to come or grow together into a single mass
- Enzyme a substance produced by a living organism that acts as a catalyst to bring about a specific biochemical reaction.

University of **California** Agriculture and Natural Resources

- catalyst soluble protein molecules that can speed up chemical reactions in cells
- Biochemical Something that's biochemical relates to chemical processes that occur in living beings, like the chemical reactions in your body
- Humus the organic component of soil, formed by the decomposition of leaves and other plant material by soil microorganisms
- Ion an electrically charged atom or group of atoms formed by the loss or gain of one or more electrons, as a cation (positive **ion**) which is created by electron, or as an anion (negative **ion**) which is created by an electron gain
- Internode a part of a plant stem between two of the nodes from which leaves emerge
- Microbes Microbes are single-cell organisms so tiny that millions can fit into the eye of a needle
- Metabolism the sum of the physical and chemical processes in an organism by which its material substance is produced, maintained, and destroyed, and by which energy is made available
- Mottling an irregular arrangement of spots or patches of color
- Necrotic (necrosis) the death of cells or tissues from severe injury or disease, especially in a localized area
- Nitrogen Fixation the chemical processes by which atmospheric nitrogen is assimilated into organic compounds, especially by certain microorganisms as part of the nitrogen cycle
- Osmosis a process by which molecules of a solvent tend to pass through a semipermeable membrane from a less concentrated solution into a more concentrated one, thus equalizing the concentrations on each side of the membrane

University of **California** Agriculture and Natural Resources

- Physiological the organic processes or functions in an organism or in any of its parts
- Petioles the stalk that joins a leaf to a stem; leafstalk
- Proton a stable subatomic particle occurring in all atomic nuclei, with a positive electric charge equal in magnitude to that of an electron, but of opposite sign
- Shoot Terminal A bud itself is simply described as an undeveloped tip of the embryonic **shoot**, or the portion that grows up and holds the plant together
- Vascular Bundles a strand of conducting vessels in the stem or leaves of a plant, typically with phloem (moves carbohydrates and other nutrients around plant) on the outside and xylem (conducts water from roots to top of plant) on the inside

University of **California** Agriculture and Natural Resources

IPM Site

- <u>http://www.ipm.ucdavis.edu/index.html</u>
 - Home, garden, turf and landscape pests
 - Vegetables
 - Select a vegetable
 - Under Cultural Tips
 - Fertilizing

University of **California** Agriculture and Natural Resources

References:

- <u>http://image.slidesharecdn.com/2-soil-formation-1-194366622680481-4/95/2-soil-formation-1-20-728.jpg?cb=1234283188</u>
- <u>http://mea.com.au/soil-plants-climate/soil-moisture-monitoring/learning-centre/what-is-soil-texture</u>
- http://www.ptable.com/
- <u>http://www.bbc.co.uk/bitesize/standard/chemistry/pr</u> <u>opertiesofsubstances/ionic/revision/3/</u>
- <u>http://soils.wisc.edu/facstaff/barak/soilscience326/es</u> <u>sentl.htm</u>

University of **California** Agriculture and Natural Resources