

Genetic Improvement of Beef Cattle: Current Practice and Future Prospects

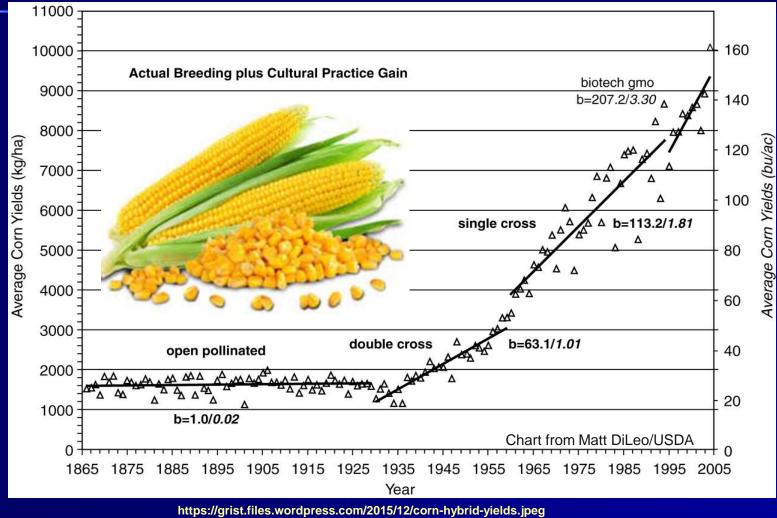
Alison Van Eenennaam, Ph.D.

Cooperative Extension Specialist Animal Biotechnology and Genomics Department of Animal Science University of California, Davis, USA

Email: alvaneenennaam@ucdavis.edu Twitter: @BioBeef BLOG: http://biobeef.faculty.ucdavis.edu http://animalscience.ucdavis.edu/animalbiotech

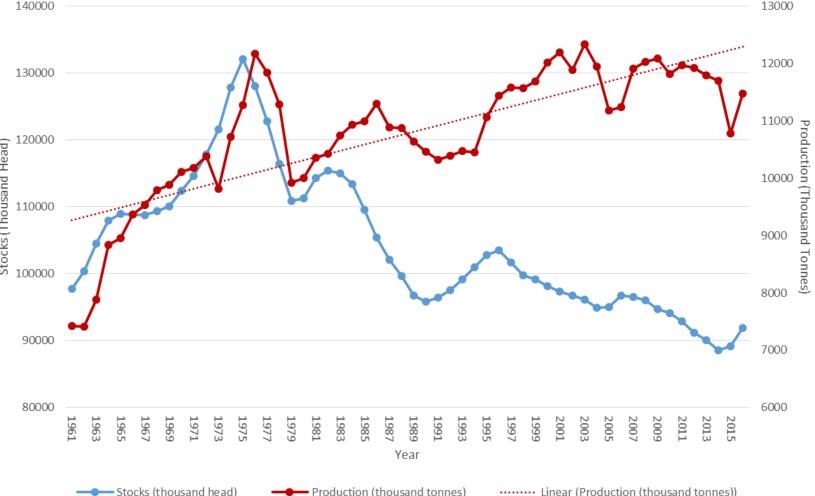
Van Eenennaam 2/2019

Animal breeders have used selection on phenotypes to great effect!



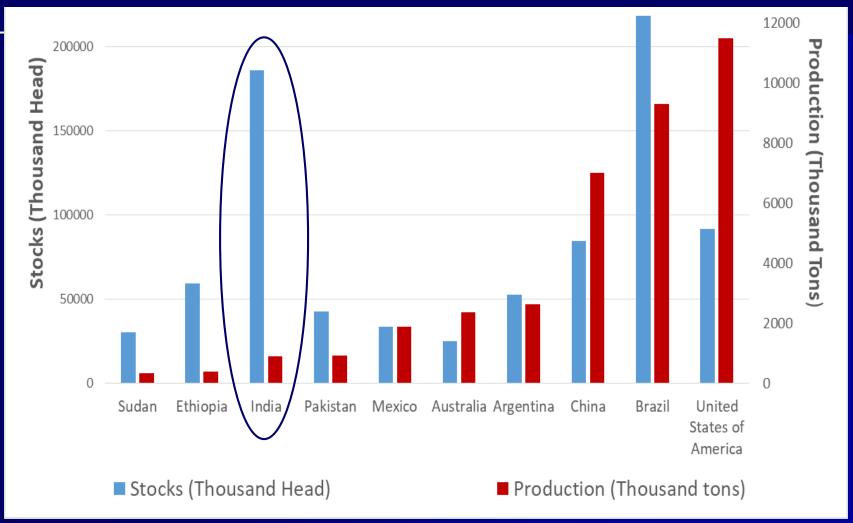
Van Eenennaam 2/2019

Plant and animal breeders have perhaps the most compelling sustainability story of all time



Stocks (Thousand Head) :961

US Cattle Inventory 1961 – 2015 Stocks Down ('000 Head; blue, left) vs. Production Up ('000 Tonnes; red, right)



Van Eenennaam 2/2019

2016 Global Beef Production Numbers Cattle numbers ('000 Head; blue, left) vs. Beef production ('000 Tonnes; red, right)

Van Eenennaam 2/2019

Time line for beef breeding

Bull purchase/selection

Image adapted from "*More Beef from Breeding*" Workshop (2007). Meat and Livestock (MLA), Australia

Progeny born

2020

Progeny slaughtered

2021

2025

Female progeny used for breeding

2023

2024

2022

Van Eenennaam 2/2019

2019

2018

Animal Genomics and Biotechnology Education

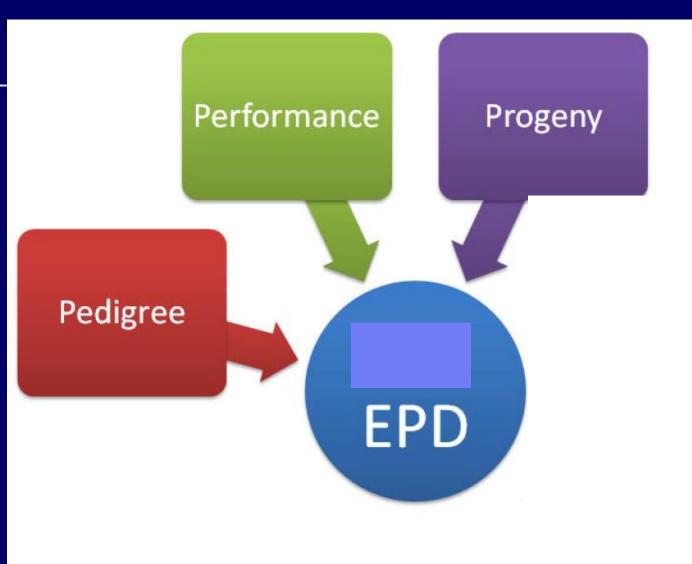
2027

2028

2026

Practical Guide to Bull Buying

- Determine marketing strategy
 - Will heifers be retained?
- Determine management level
 - Nutrition
 - Labor
- Assure bulls are reproductively sound
 - BSE
- Check for structural soundness



- Best tool for selecting for performance traits
- Uses all information: actual measurement, relatives, environment, genomics
- Risk management tool

Information sources for EPDs

What EPDs are available?

EPD Definitions		
	BULL A	BULL B
Calving ease direct	10	6
Birth weight	2.0	3.5
Weaning weight direct	20	22
Yearling weight	40	52
Yearling height	0.3	0.6
Milk	3	-2
Maternal weaning weight	13	9
Gestation length	-0.1	1.1
Calving ease maternal	4	6
Mature daughter height	0.5	1.0
Mature daughter weight	0	30
Scrotal circumference	0.1	-0.45
Heifer pregnancy	6	9
Udder	0.4	-0.1
Teat	0.5	0
Carcass weight Percent retail cuts Marbling IMF Rib-eye area Fat thickness Rump fat thickness Tenderness Days to finish Residual average daily gain Residual feed intake Dry matter intake	2.0 0 3.0 0.06 -0.01 -0.03 -0.01 15 -0.1 -0.05 0.2	20 0.2 -0.3 1.0 1.6 -0.09 -0.10 0.1 10 0.05 0.10 0.4
Stayability	10	6
Maintenance energy	0	10
Docility	6	2

+65 lbs Direct +50 lbs weaning weight Expect the average difference in offspring to be 15 pounds.

+25 lbs

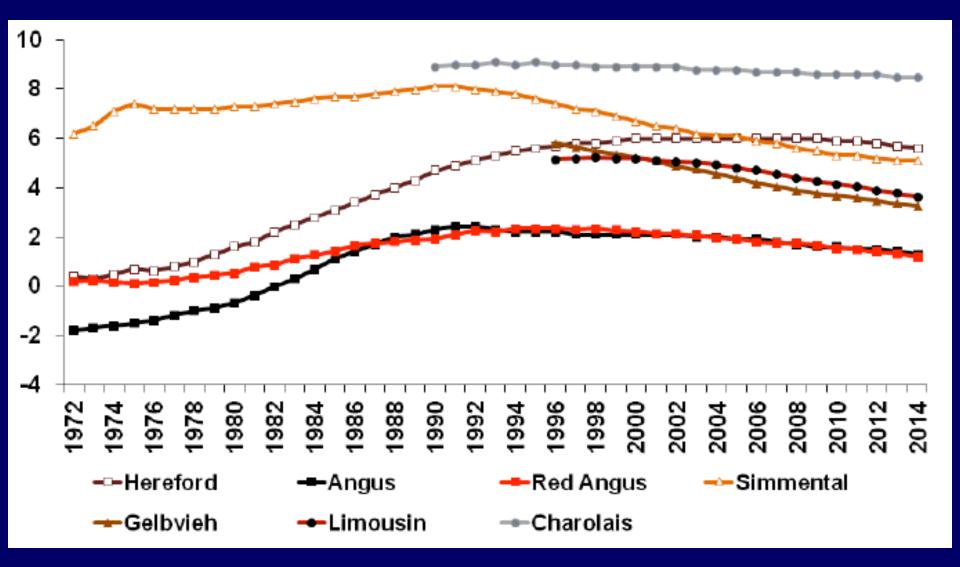
Direct weaning weight

Expect the average difference in offspring of the sires daughters to be 10 pounds.

Calving Ease

 Bull – Calving Ease Direct -Heifers/Cows Time spent with calving females Heifers – Calving Ease Maternal -If replacements are kept -Does not replace buying CED bull

CALIFORNIA



Smallest calf

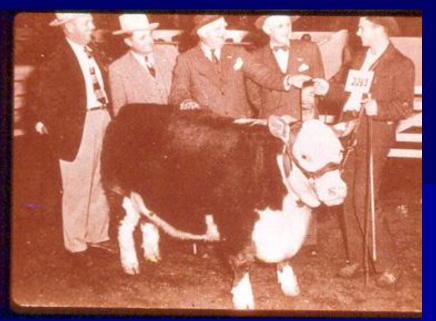
An 850-pound Angus cow, owned by Paul Utz of Madison, Va., 1 cks the face of her calf. Weighing 16 pounds at birth, the calf is the world's smallest, according to officials at the Guiness Book of World Records. (AP Laserphoto)

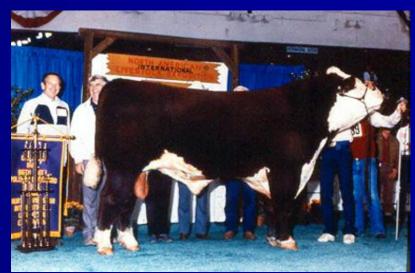
Van Eenennaam 2/2019

Birth Weight Trends

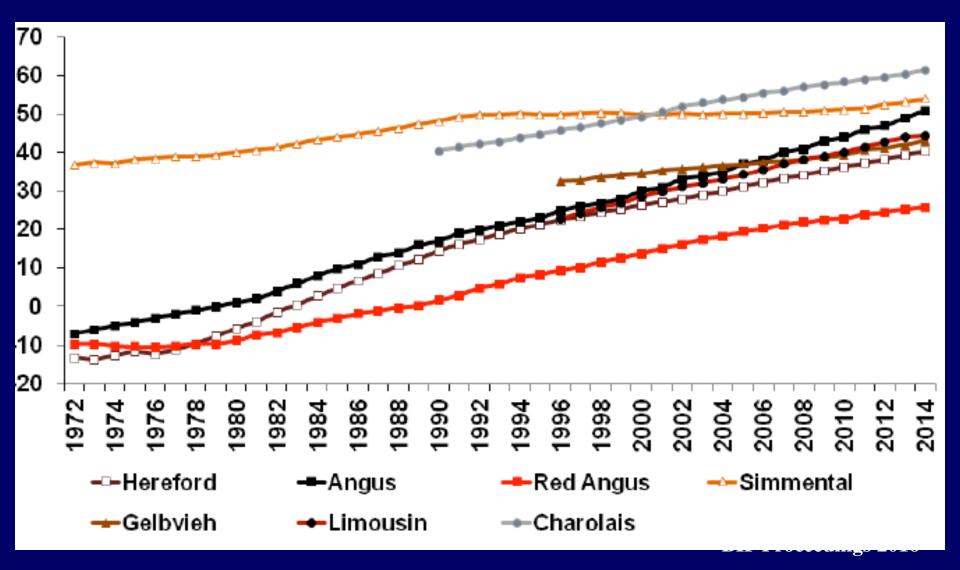
Growth Use EPD closest to marketing endpoint

- -Weaning Wt EPD
- -Yearling Wt EPD
- –Carcass Wt EPD
- Be aware of correlated traits

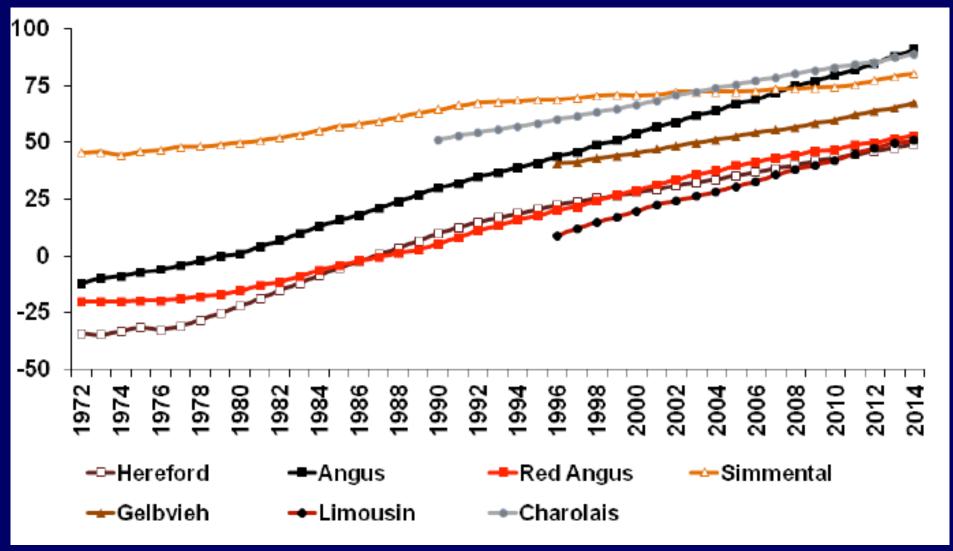

 Milk
 - Mature SizeCalving Ease


1953. Grand Champion Angus Female, International, 1953

1950. Grand Champion Steer, International, weighing 1025 lbs



1986. "<u>Coblepond New Yorker</u>" weighed 2529 Ibs and measured 65 inches tall at 35 mos. (Frame 10) when he was Denver Champion.

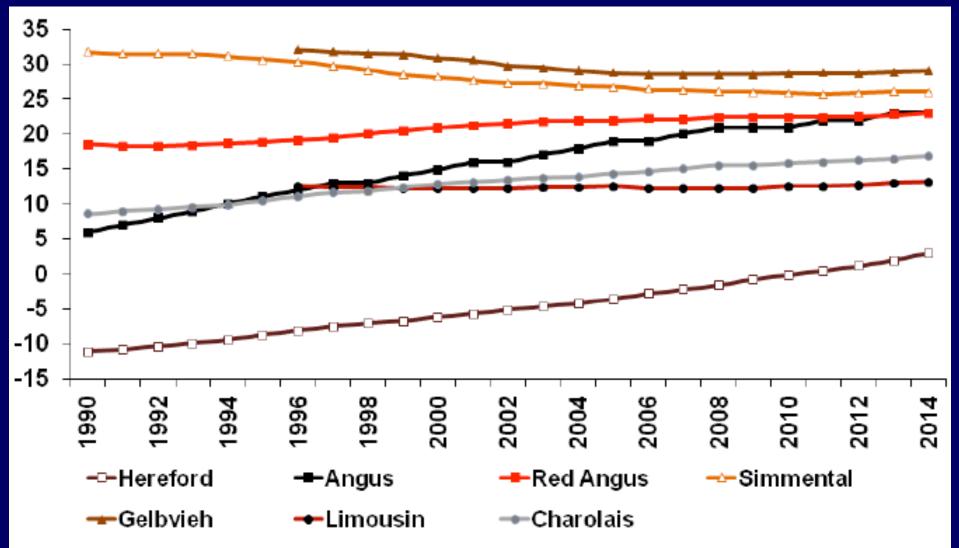


1988 Grand Champion Bull, National Polled Hereford Show (frame 10). Images from Harlan Ritchie's historical review of type https://www.msu.edu/~ritchieh/historical/cattletype.html

Weaning Weight Trends

Yearling Weight Trends

BIF Proceedings 2016


Van Eenennaam 2/2019

Maternal

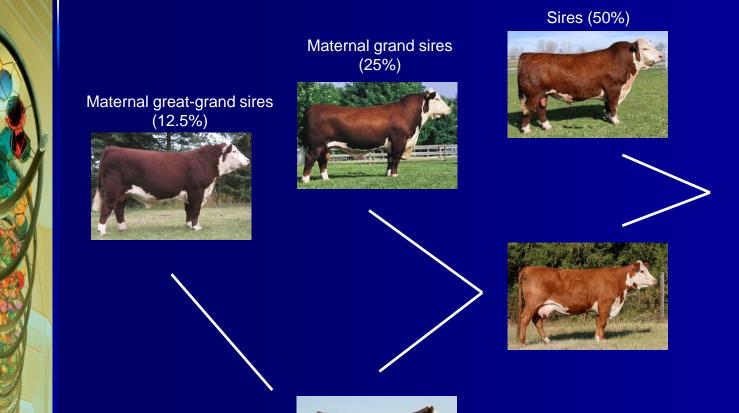
- Milk
- Reproduction

 Heifer Pregnancy
 30-Month Pregnancy
 Stayability
 Sustained Cow Fertility

Milk Trends

BIF Proceedings 2016

Van Eenennaam 2/2019


When making selection decisions to improve fertility – which group of cattle should selection focus upon?

Bulls
 Cows
 Heifers

Genetic composition of the herd: 87% of genetic composition of calf crop is determined by the sires used over the last 3 generations

Van Eenennaam 2/2019

- Carcass Wt EPD
 Quality Factors

 Marbling EPD
 % IMF EPD
- Yield Factors

 Fat EPD
 Ribeye Area EPD

- Disposition
 Docility EPD
- Scrotal Circumference
 SC EPD
 - -Actual Measurement
- Color/Horned-Polled

 Homozygous vs Double bred
 Carrier

								S A V Brilliance											
6111	P	PVF Insight 12						PVF Missie											
								Triple C Majic Man											
NB Magic Sugar																			
							NB Sugar & Spice												
CE BW		~~~	YW	N	1CE		Mill	k ľ	MWN	N	Ma	rb	R	ΞA	А	PI			
14 -0.6		2	104		8		30)	61		0.2	27	1	.2	13	31			
2018	Ρι	ire	bre		S	im	m	en	ta	IF	Per	ce	nt	ile	T	ab	le		
Purebred	%	API	TI	CĚ	BW	ww	ADG	YW	MCE	MLK	MWW	STY	DOC	CWT	YG	MRB	BF	REA	SF
Turebred	1	163.73											15.2		-0.49		-0.100		
Fullblood	2	159.11												50.9			-0.094		
	3	156.19											14.4		-0.45		-0.091		
Simbrah	4	153.99											14.2		-0.44		-0.088		
	5	152.20						120.4							-0.43		-0.086		
Hybrid	10 15	146.07 141.93						114.7					13.3 12.9		-0.40		-0.079		
	20	138.63				72.1		107.8					12.9		-0.38 -0.37		-0.074 -0.070		
Top Fifty Sires	25	135.81						107.0						36.0	-0.35		-0.067		
	30	133.26						102.8						34.4	-0.34		-0.063		
Possible Change	35	130.92						100.7			55.9		11.7		-0.33		-0.061		
	40	128.68				66.7		98.6	9.1		55.0			31.4			-0.058		
	45	126.53					0.20		8.7		54.2				-0.31		-0.056		
	50	124.40			1.8		0.19		8.3		53.4			28.7	-0.30		-0.053		
	55	122.27	69.02	9.3	2.0	63.2	0.18	92.6	7.9	20.7	52.6	11.5	10.8	27.3	-0.29	0.12	-0.050	0.73	-0.31
	60	120.12	68.13	8.9	2.3	62.1	0.18	90.6	7.5	20.1	51.8	11.1	10.5	26.0	-0.28	0.10	-0.048	0.70	-0.30
	65	117.88	67.20	8.4	2.5	60.8	0.17	88.5	7.1	19.4	50.9	10.7	10.3	24.5	-0.27	0.08	-0.045	0.68	-0.29
	70	115.54	66.23	7.9	2.7	59.6	0.16	86.4	6.6	18.7	50.0	10.2	10.1	23.0	-0.26	0.06	-0.043	0.66	-0.28
	75	112.99	65.18	7.3	3.0	58.2	0.16	84.0	6.1	18.0	49.0	9.7	9.8	21.4	-0.25	0.04	-0.040	0.63	-0.27
	80	110.17	64.01	6.7	3.3	56.7	0.15	81.4	5.6	17.2	47.9	9.2	9.5	19.6	-0.23	0.01	-0.036	0.60	-0.25
	85	106.87	62.64	6.0	3.7	54.9	0.14	78.3	5.0	16.2	46.7	8.6	9.1	17.5	-0.22	-0.02	-0.032	0.56	-0.24
	90	102.73	60.93	5.1	4.1	52.6	0.13	74.5	4.2	15.0	45.1	7.8	8.7	14.9	-0.20	-0.05	-0.027	0.52	-0.22
	95	96.60	58.39	3.7	4.8	49.3	0.11	68.8	3.0	13.2	42.7	6.6	8.0	10.9	-0.17	-0.11	-0.020	0.45	-0.19
	Avg	124.40	69.90	9.8	1.8	64.4	0.19	94.6	8.3	21.3	53.4	11.9	11.0	28.7	-0.30	0.14	-0.053	0.75	-0.32

		·		F	Product	ion			Maternal										
://www.an	CED	- · ·	WW	YW	RADG		YH	SC	DOC	HP	CEN		MkH		MH	EN\$			
America	Acc	Acc	Acc	Acc	Acc	Acc	Acc	Acc	Acc	Acc	Acc	Acc	MkD	Acc	Acc				
AN	+19	-3.6	+53	+98	+.22	+.19	+.6	+.50	+14	+13.4	+18	+28	5	+14	+0	-9.09	1		
THE BUS Accu	.75	.85	.79	.64	.46	.46	.64	.69	.55	.29	.22	.28	5	.47	.23	-9.09	<u>'</u>		
Spring																			
The fol			Car	rcass			Usi	nd	\$Values										
various describ "true" r for an E progen	CW Acc	Mart Acc			Fat Acc	Grp Prog	UG UPr	irp og	Wean	Feed	llot	Grid	\$QG	\$Y	Ğ	Beef			
With th	+32 .50	04 .54		55 52	+.085 .49	5 12	13 34		62.55	60.0)9	-1.35	2.6	-3.9	95	77.15			
, and the second					Produc	tion					Materi	าลเ			Carcas	55			
	Accuracy	CED	BW	ww	YW	RADG	DMI	YH SC	C Doc	HP CI	EM M	Milk MW	/ МН	CW	Marb	RE	Fat		
	05	9.7	2.55	14.9	24.3			.42 .76				9.5 38		20	.29		.041		
.1		9.2 8.7	2.42	14.1 13.3	23.0 21.7	.087		.40 .72 .38 .68				9.0 36 8.5 34		19 18	.28	.28 .27	.039		
	20	8.2	2.20	12.6	20.5			.35 .64		0.7		8.0 32		17	.20	.27	.037		
	25	7.7	2.02	11.8	19.2			.33 .60				7.5 30		16	.23		.032		
.3	30	7.2	1.88	11.0	17.9	.068	.538 .	.31 .56	6 12.3	5.7	2.2	7.0 28	.40	15	.22	.22	.030		
.3	35	6.7	1.75	10.2	16.6	.063	.500 .	.29 .52	2 11.4	5.3	7.1	6.5 26	.37	14	.20	.20	.028		
	40	6.2	1.61	9.4	15.4	.058		.26 .48				6.0 24		13	.18	.19	.026		
	45	5.6	1.48	8.6	14.1			.24 .44				5.5 22		12	.17		.024		
.5		5.1	1.34	7.9	12.8			.22 .40				5.0 20		11	.15		.022		
	55	4.6	1.21	7.1	11.5			.20 .36				4.5 18		10	.14	.14	.019		
	60	4.1	1.08	6.3	10.2	.039		.18 .32				4.0 16		9	.12	.12	.017		
	65 70	3.6	.94	5.5	9.0			.15 .28				3.5 14		7	.11	.11	.015		
	70	3.1	.81 67	4.7 3.9	7.7 6.4	.029		.13 .24				3.0 12 2.5 10		6 5	.09		.013		
	75 80	2.6	.54	3.9 3.1	6.4 5.1			.11 .20 .09 .16				2.5 10 2.0 8		5	.08 .06	.08	.011		
	80	1.5	.54	2.4	3.8			.09 .16				2.0 8 1.5 6		4	.06		.009		
	90	1.0	.27	1.6	2.6	.010		.07 .12				1.0 4		2	.03	.03	.008		
	95	.5	.13	.8	1.3	.005		.02 .04		.4	.5	.5 2		1	.02	.02	.002		

Historically not all cattle breeding objectives have been economic

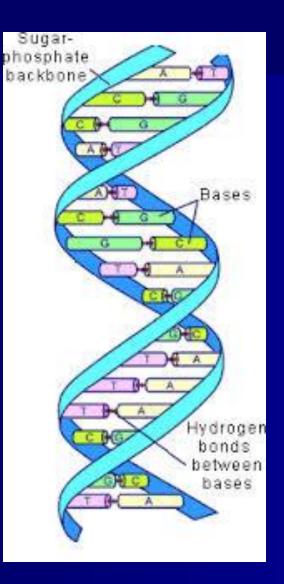
Photo taken in 1949 at Red Bluff Bull Sale, CA. Kindly provided by Cathy Maas from Crowe Hereford Ranch, Millville, CA.

Selection Index

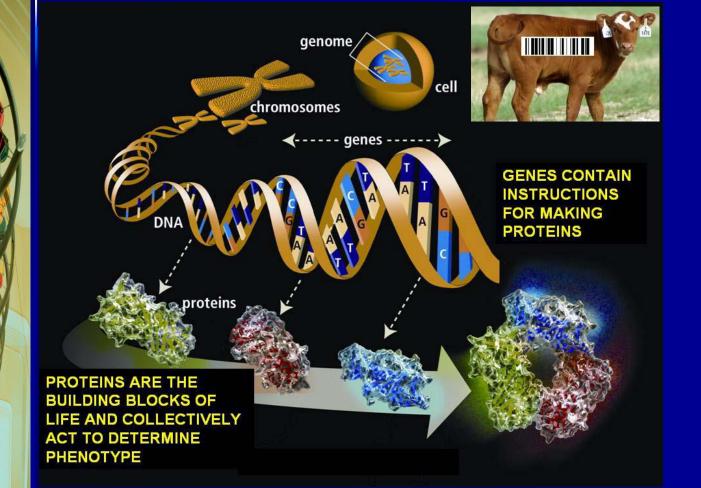
- Allows comparison on single value
- Weights traits according to economic importance
- Selection index
 - $= a_1 EPD_1 + a_2 EPD_2 + \ldots + a_k EPD_k$

Selection Index

- Easy to use, selection based on one value
- Should be aware of EPD in index that is not of value to your beef operation
- If missing relevant EPDs, use SI in tandem with those EPDs


Many beef breeds have indexes which combine EPDs according to economics

TERMINAL	MATERNAL
\$B, \$F, \$G (Angus)	\$W, \$EN (Angus)
TI (Simmental)	API (Simmental)
CHB\$ (Hereford)	BMI\$, BII\$, CEZ\$ (Hereford)
MTI (Limousin)	HerdBuilder (Red Angus)
EPI and FPI (Gelbvieh)	\$Cow (Gelbvieh)
Charolais	\$M (Beefmaster)
GridMaster (Red Angus)	
\$T (Beefmaster)	<pre>\$Profit (Topline-Leachman Bulls)</pre>



Genomics

The bovine genome is similar in size to the genomes of humans, with an estimated size of 3 billion base pairs.

Human & cattle genomes are 83% identical

Van Eenennaam 2/2019

1000 Bull Genomes Run 6

2703 Sequenced Animals, 11x

~55 Breeds: Dairy, Beef, Dual Purpose, Crosses, Composites

2703 x 11 x 3 billion= 90,000,000,000,000

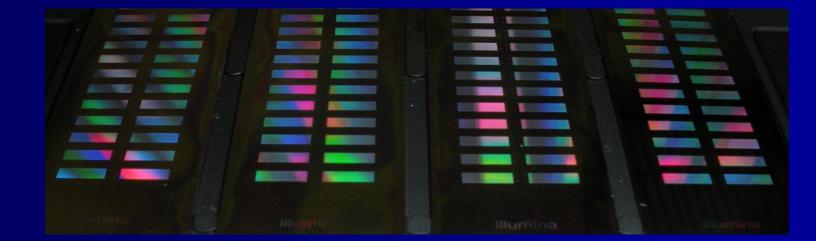
Slide courtesy Ben Hayes, QAAFI

1000 Bull Genomes Run 6

86.5 million single-nucleotide polymorphisms (SNPs) and 2.5 million small insertion deletions

Run 6 – Taurus only 44.7 million filtered variants 43 million SNP, 1.7 million Indel Run 6 – Taurus Indicus

86.5 million filtered variants 84 million SNP, 2.5 million Indel


Hayes, B. J. & Daetwyler, H. D. 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. *Annual review of animal biosciences*, doi:10.1146/annurev-animal-020518-115024 (2018).

Van Eenennaam 2/2019

High-throughput genotyping technology enabled the development of high density "SNP chips"

The 2009 sequencing of the bovine genome allowed for the development of a 50,000 SNP chip, also known as the "50K"

Van Eenennaam 2/2019

Animal Biotechnology and Genomics Education

We can use these SNPs for "genomic" selection?

TRAINING POPULATION

1,000s animals

- Phenotypes
- Genotypes

Training = estimate the value of every chromosome fragment contributing variation in a population with phenotypic observations

Prediction = the results of training can then be
used to develop prediction equations to predict
the merit of new animals (e.g. young bulls)

Angus: Current implementation size

- 7.7M birth weights
- 8.4M weaning weights
- 4.1M post-weaning gain records
- 1.5M heifer calving ease scores
- 112K carcass records
- 1.8M ultrasound records
- 19K individual intake records
- 237K docility scores
- 57K heifer pregnancy observations
- 199K mature cow weights

Slide courtesy of Steve Miller 5/9/2017

Information sources for EPDs – DNA just one source of data for GE-EPD Performance Progeny Genomic Pedigree **Test Result** GE-**EPD** Accuracy (r) – correlation between test result and actual genetic merit

Genomic-Enhanced EPDs (GE-EPD)

Genomics in National Cattle Evaluation (NCE)

- Currently several breeds are using genomic information in their national cattle evaluation programs
 - Angus
 - Red Angus
 - Limousin
 - Simmental
 - Beefmaster

- Hereford
- Gelbvieh
- Charolais
- Santa Gertrudis
- Brangus
- Other breeds are trying to incorporate genomic information
- Virtually only National Cattle Evaluation traits only traits with enough data

How much do genetic tests cost?

- \sim \$13-20 for parentage testing
- ~\$20-\$30 per animal for a single mutation test for a disease or trait
- \$75-90 for the high-density SNP chips for genomic-enhanced EPDs.
- \$45-50 for the low-density imputation chips.

Breed associations work to include that genomic information to provide genomic-enhanced EPDs (GE-EPD) that have improved accuracy due to the inclusion of the genomic information in the EPD calculations. If multiple tests can be performed on a single DNA sample or a large volume of samples is tested then the cost per test is reduced. Additional costs can include the cost of DNA cards, sample collection, sample storage and shipping and sample processing, again depending on sample type, test and application.

There are several tests that are being marketed for use on commercial cattle that are not directly part of a breed association genetic evaluation program.

- GeneMax Advantage (\$39) and GeneMax Focus (\$17). Distributed by Angus Genetics Inc. (AGI) and marketed by Zoetis[®] for cattle that are at least 75% Angus.
- PredicGEN (\$19.50) is a test marketed by Zoetis[®] as "a heifer selection tool for straight-bred or crossbred British/Continental animals"
- The Igenity Beef Profile (\$29) marketed by Neogen[®] as "DNA profiles for crossbred and purebred cattle." Predictions for weaning weight, yearling weight and hot carcass weight for a total of 16 traits scored on a 1–10 scale, plus two new selection indexes."The Igenity profile was designed and validated for crossbred or straightbred cattle with backgrounds of Angus, Red Angus, Simmental, Hereford, Limousin and Gelbvieh
- There aren't yet any independent, peer-reviewed papers documenting the field performance of these tests for commercial cattle.

Van Eenennaam 2/2019

Crossbreeding

- Should always be a consideration for commercial cattle producers
- Greatest benefit to reproduction and longevity
- Rule of thumb no females with >75% one breed!

Website: eBEEF.org YouTube: eBEEF Twitter : @eBEEForg

Van Eenennaam 2/2019

Take Homes

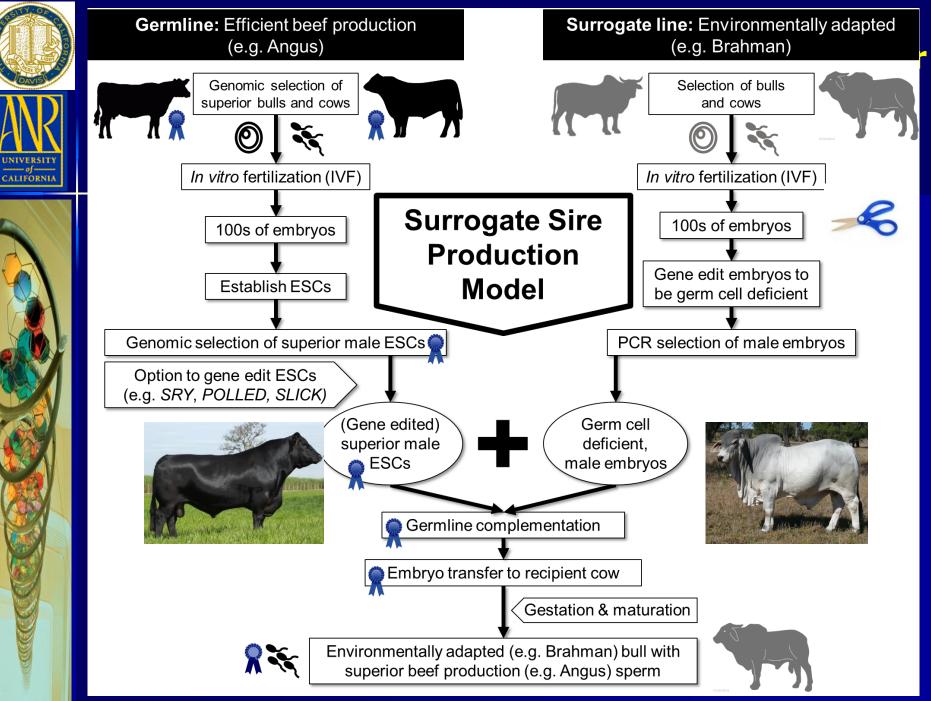
DNA testing can be used it identify parentage, genetic defects, and to improve the accuracy of breed EPDs

- Tests have not been shown to work well in predicting genetic merit of crossbreds
- Economics of testing commercial cattle needs to be carefully considered – will depend on a number of factors – return greater on males than females

Van Eenennaam 2/2019

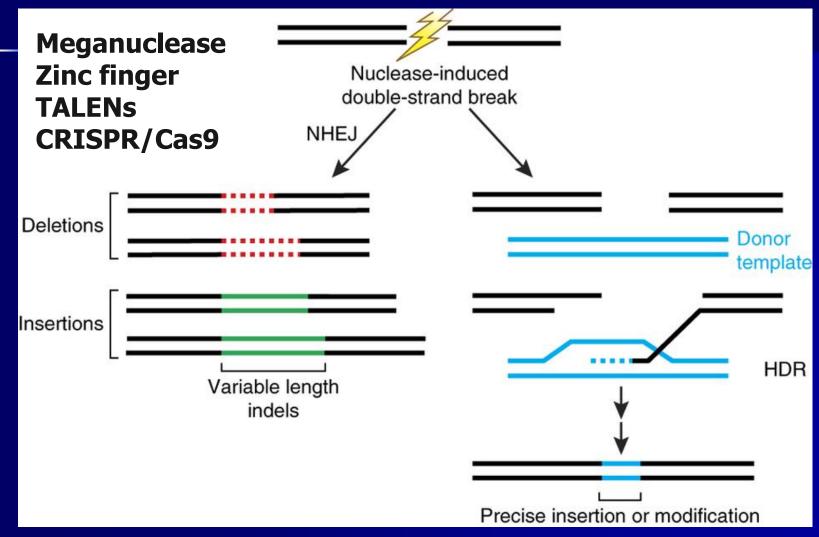
Thanks for inviting me!

ANIMAL SCIENCE


My laboratory receives public funding support from the National Institute of Food and Agriculture and the Biotechnology Risk Assessment Grant (BRAG) program, U.S. Department of Agriculture, under award numbers 2011-68004-30367, 2013-68004-20364, 2015-67015-23316 and 2015-33522-24106.

United States Department of Agriculture

National Institute of Food and Agriculture



Van Eenennaam 2/2019

ALIFORNIA

Will gene editing allow an additional inflection point in rate of livestock genetic gain?

Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. *Nat Biotech* 2014;32:347-355. Animal Biotechnology and Genomics Education

Gene Edited Polled Calves Naturally-occurring bovine allele at polled locus

Carlson DF, Lancto CA, Zang B, Kim E-S, Walton M, et al. 2016. Production of hornless dairy cattle from genome-edited cell lines. Nat Biotech 34: 479-81

iCOMOS 5/1/2018

Anima ABioted Genogyies and GeBiotech Edlogsti Education

Precision Breeding Offers New Alternative to Dehorning Cattle https://www.youtube.com/watch?v=-Qks_LMmodw

Editing is the Cherry on Top of Breeding Sundae It will be able to introduce useful alleles, and potentially bring in useful novel genetic variation to improve livestock rapidly, without "linkage" drag

Genome Editing

- Somatic cell nuclear transfer cloning
- **Genomic Selection**
- Embryo Transfer
- Artificial insemination
- Progeny testing
- Performance recording
- Development of breeding goals
- Association of like minded breeders

Cracking the genetic code for complex traits in cattle

20 February 2018

A massive global study involving 58,000 cattle has pinpointed the genes that influence the complex genetic trait of height in cattle, opening the door for researchers to use the same approach to map highvalue traits including those important for beef and milk production.

The University of Queensland's Professor Ben Hayes, who heads the global 1000 Bull Genomes Consortium of 57 researchers from 30 institutes, said it had previously been a major challenge to identify variants

in the genome affecting complex traits, due to variations within multiple genes, and behavioural and environmental factors.

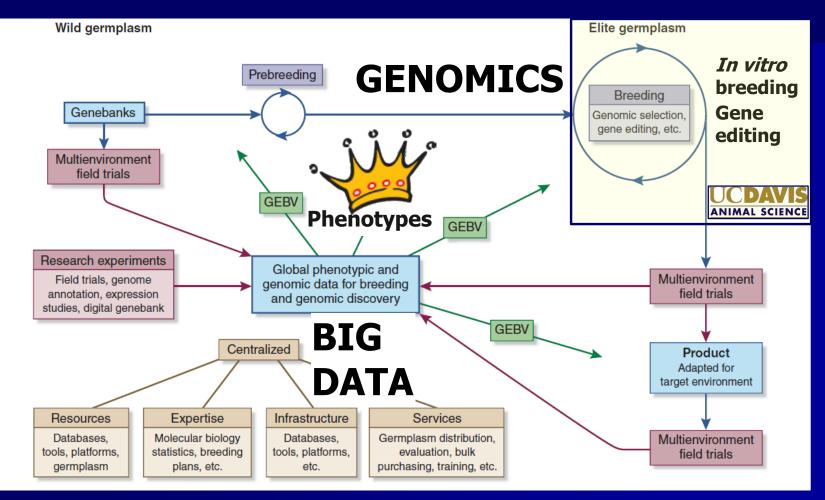
"To overcome this issue, the consortium pooled large genomic datasets and phenotypes collected from 58,000 cattle around the world to gain the clearest picture so far of their genetics," Professor Hayes said.

"We needed access to vast resources of data in order to demonstrate that the genes affecting a complex trait like height can be accurately identified.

"By applying the same collaborative big data approach, it may now be possible to identify genes associated with high-value complex traits that are really important to the industry, such as beef and milk production, feed efficiency and reduced methane emissions."

The 1000 Bull Genomes Consortium's findings on height were confirmed by analysing the genetic material of miniature cattle and the DNA sequenced from a 6500-year-old wild auroch bone.

"Aurochs are an extinct species of large wild ox – which were domesticated by ancient humans about 10,000 years ago and bred to be shorter – and are the ancestor to all cattle breeds," Professor Hayes said.


"From analysing the DNA of this animal, we could predict its height, and then verify our prediction with the fossil records of auroch skeletons."

Bouwman AC, et al. 2018. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat Genet. Feb 19. doi: 10.1038/s41588-018-0056-5. [Epub ahead of print] PubMed PMID: 29459679.

Van Eenennaam 2/2019

Animal Biotechnology and Genomics Education

Hickey et al., 2017; Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat Genet. 49:1297-1303.

Van Eenennaam 2/2019

Animal Biotechnology and Genomics Education