

Livestock Production in the Low Desert

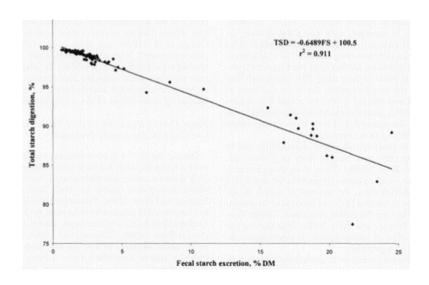
- 2,000,000 cattle on feed
 - 350,000 in Imperial County
 - Holstein and crossbred cattle
- Replacement heifers
- Sheep
- Declining dairy

National Park Service

Livestock Research in the Low Desert

- Desert Research and Extension Center
 - Over 200 acres
 - Research feedlot

National Park Service


Sheep Research in the Low Desert

 Sheep graze alfalfa fields through the winter

- Weed control
 - Sheep select for weeds
 - As effective as herbicide
 - Non-grazed fields had higher yield due to contribution of weeds
- Insect pressure
 - Sheep will eat weevils and larva
 - May be beneficial for yields

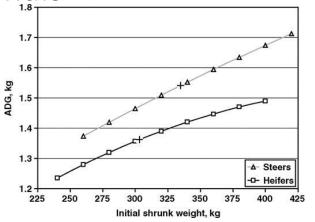
- Steam flaking feed corn
 - Increase in value of corn by18%
 - 14.2 and 17.3% more NE_m and NE_g than dry rolled corn
 - Density and thickness of flakes important

- Direct measure of starch concentration in feces can help determine adequacy of steam flaking for
- Over 11 studies done on corn processing at DREC

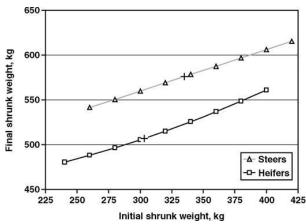
Dietary energetics

- As dietary NE increased:
 - DMI decreased
 - G:F, dressing %, and yield grade increased
- As shrunk initial weight increased:

Table 6. Glossary of equations used for development of feedlot performance evaluation tools

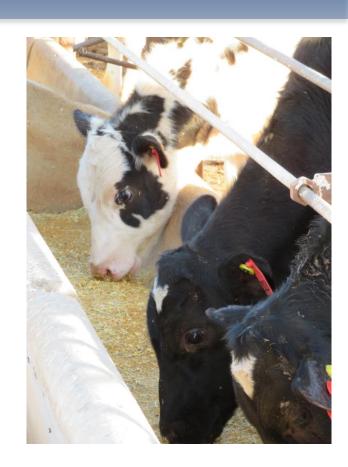

Variable ¹	Equation ²
MQSFW _{steer} , kg	419.6 + 0.4619 SIW
MQSFW _{heifer} , kg	$444.09 - 0.06018 \text{ SIW} + 0.000881 \text{ SIW}^2$
MQADG _{steer} , kg	$0.6664 + 0.003091 \text{ SIW} - 0.00000143 \text{ SIW}^2$
MQADG _{heifer} , kg	$0.4421 + 0.004336 \text{ SIW} - 0.00000429 \text{ SIW}^2$
SFW _{steer} , kg	333.4 + 0.2534 SIW + 101.7 ADG
SFW _{heifer} , kg	$420.9 - 0.6317 \text{ IW} + 0.001557 \text{ IW}^2 + 98.0 \text{ ADG}$
PQS	2 + (MQADG - ADG _{observed})/(0.30 MQADG)
MFW _{steer} , kg	509.6 + 0.4697 SIW - 46.54 PQS
MFW _{heifer} , kg	$551.5 - 0.2482 \text{ SIW} + 0.00119 \text{ SIW}^2 - 39.84 \text{ PQS}$
ADG _{steer} , kg	$1.628 + 0.00287 \text{ SIW} - 0.00000107 \text{ SIW}^2 - 0.461 \text{ PQS}$
ADG _{heifer} , kg	$1.265 + 0.00432 \text{ SIW} - 0.00000425 \text{ SIW}^2 - 0.410 \text{ PQS}$
RE _{steer} , Mcal	$0.0606 \times (LW \times 478/MFW_{steer})^{0.75} ADG^{0.905}$
RE _{heifer} , Mcal	$0.0618 \times (LW \times 478/MFW_{heifer})^{0.75} ADG^{0.905}$
EM, Mcal	0.077 LW ^{0.75}
Q	$[NE_m (DMI - (RE/NE_z)]/W^{0.75}$
NE _m , Mcal/kg	$\{-[0.877 \text{ EM} + 0.41 \text{ DMI} + \text{RE}] - [(0.877 \text{ EM} + 0.41 \text{ DMI} + \text{RE})^2 - (1.438 \times \text{EM} \times \text{DMI})]^{0.5}\}/-0.82 \text{ EM}$
NE _g , Mcal/kg	$0.877 \text{ NE}_{m} - 0.410$

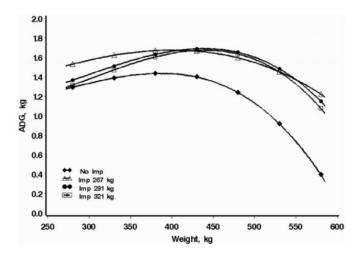
MQSFW = shrunk final weight for medium quality or average cattle (steer or heifer); MQADG = ADG for medium quality or average cattle (steer or heifer); SFW = shrunk final weight (steer or heifer); PQS = performance quality score ranking of 1 to 3, with 2 representing medium quality or average daily weight gain; MFW = mature final weight when cattle are expected to achieve 28% empty body fat; RE = energy retained; EM = maintenance energy expenditure; Q = maintenance coefficient.


²SIW = shrunk initial weight; IW = initial weight; LW = mean feeding live weight.

- ADG, DMI, and shrunk final weight increased
- G:F and dressing % decreased
- Led to revision of energy requirement equations for feedlot steers and heifers

Predictability of performance of Holstein feedlot animals





- Management of new calves
 - Amount of available energy to feed on arrival
 - Amino acid supplementation in first 7 days for lightweight calves
 - Using yeast culture to reduce morbidity in newly received feedlot calves
 - Supplementing B-vitamins to decrease morbidity of high stress feedlot calves
 - Using rumen-protected amino acids to improve gain of feedlot calves

- Implant strategies
 - Benefits of implantation on lightweight Holstein steers
 - Weight of animal at implant
 - Between weights of 267-321 kg, no performance difference
 - Duration of implants
 - Short duration with more frequent implantation better ADG than longer duration with less frequent implantation

- Feedlot management
 - Using shade and feeding schedules to improve ADG and gain efficiency
 - Facilitate heat loss in evening hours
 - Decrease heat stress
 - Critical in low desert high temperature months

What's Next for Research in the Low Desert?

- More research on nutrition, management practices, etc.
- Huge backlog of information about desert feedlot management
 - Specifically for Holstein and crossbred cattle
 - Needs to be shared with producers

Questions?

