Stink bugs: Challenging pests in organic systems

lan Grettenberger, UC Davis

Field and vegetable crop IPM lab

Service Approximation and Natural Resources

"I hate playing stinkbugs! Every time we press them on defense, they just let 'er rip!"

Life cycle

Non-crop hosts, polyphagy

Overwinter behind tree bark, buildings, boards, and leaf litter

Overwintering sites: Consperse, red shouldered and southern green

Stink Bug Seasonal Movement

Emerging population reproduces on mustard, wild radish and cheeseweed

After harvest, stink bugs move to blackberry and under tree bark in riparian areas to overwinter

Damage

Damage

Damage

- Produce a defensive secretion, also can serve as alarm pheromone
- Generally on the larger side as adults
- Nymphs range from tiny to as big as adults
- Several generations per year
- Adults can be long-lived
- Populations are variable (outbreaks)
- Can be challenging to manage with insecticides, even in conventional systems

Red shouldered stink bug

Consperse stink bug

Southern green stink bug

Say's stink bug

Harlequin bug

Chemical tools?

- Stink bugs are difficult to control with organic insecticides
- Some organic insecticides, such as pyrethrum, can often be disruptive to naturally occurring biological control.

Replacement of vegetation

E. conspersus in Tomatoes Adjacent to Weedy and Cultivated Borders

 \star

Significantly greater than non-host border (p < 0.05)

 \star

Mean of four fields not treated with insecticide for stink bugs

Border weed control

- Early spring cultivation of field borders destined to be adjacent to tomato fields
- Field-scale or farm-scale elimination of habitat is likely to have the greatest influence

Parasitoid wasps (and other natural enemies) attack stink bug eggs

Egg parasitoid wasps (Scelionid), 15-25% parasitism in tomatoes

Hedgerow of flowering plants enhance natural enemies and biocontrol

Hedgerows had more parasitoid wasps and exported more parasitoid wasps into adjacent crops than weedy edges

Hedgerows and parasitism of stink bug egg masses

Stink bug parasitism in tomato fields 10% higher with hedgerows

Significantly greater than the control (p < 0.05)

What about stink bugs new to CA?

Brown marmorated stink bug: A threat to California nut crops?

The UCR research is part of a nationwide USDA Specialty Crop Research Initiative-funded program to monitor and control brown marmorated stink bug. Brown marmorated stink bug feeding on developing pistachios.

Cecelia Parsons

Stink Bug Threatens High-Dollar Crops in California

These gummed nuts could be an indication of the presence of brown marmorated stink bug in this almond orchard. (Photo: Jhalendra Rijal)

BMSB in the US

BMSB in California

Sentinel Egg Cards for Brown Marmorated Stink Bug

Imaging Sentinel Egg Cards

Percent of eggs consumed through predation of sentinel eggs on tree trunks, mean±SEM, Sacramento Region*.

WHAT IS FEEDING ON EGGS?

Year	%	N = # sentinel
	damage	cards
2014	5.3±2.1	49
2015	11.2±2.1	218
2016	21.7±3.2	184
2017	26.3±2.4	303

*June through October

Spider Feeding on Eggs

Ground Beetle Feeding on BMSB Sentinel Eggs, Sacramento 2015

Over 8 hr period, middle of night, 5 minute sequences

Parasitoid, Ooencyrtus ?

BMSB Earwigs (Dermaptera)

European earwig

Ring-legged earwig

Trap crops

Bagrada bugs damage an array of crops

http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=4047 http://urbanhomestead.org/journal/2012/07/11/bad-bad-bagrada-bug/ http://www.chowbacca.com/2014/08/bagrada-bugs-bother-bounty-grumpy.html

Young plants are most susceptible

JC Palumbo

Organic management of bagrada

- Chemical management
- Natural enemies?
- Row cover
- Weed management
- Post-harvest residue destruction
- Trap crops
- Vacuums
- Avoidance
- Scouting/risk assessment

Biological control?

- Likely minimal control by generalist predators
- Specialized natural enemies not yet present

17 -

Bagrada bugs and weeds

- A small subset of the total flora are primary hosts
- Weed characteristics critical → dry down+movement
- Management and scouting \rightarrow IPM framework

Acknowledgements

- Grower and PCA cooperators
- Funding: CDFA
- Slides:
 - Rachael Long (UCANR)
 - Frank Zalom (UCD)
 - Joanna Fisher (UCD)
 - Charlie Pickett (CDFA)

CALIFORNIA DEPARTMENT OF FOOD & AGRICULTURE

Questions?

Organic insecticide work from AZ

Dr. John Palumbo, University of Arizona

Field trials in broccoli

Petri dish spray assay #1

Petri dish spray assay #2

