

USDA SCRI FUNDING# 2011-01397

NC STATE UNIVERSITY

Grafting Heirloom Tomatoes

Frank J. Louws Director NSF Center for IPM Department of Plant Pathology North Carolina State University Raleigh NC USA 27695-7616 frank louws@ncsu.edu

Fungicides Biological control Sanitation Cultural control Environmental control Genetic resistance Crop Selection Growing system Site Selection Grower Knowledge/Experience

IA. Know Your Biology: The Disease Triangle

III DIAGNOSIS CAN BE DIFFICULT:

FIGURE 1-2 Schematic diagram of the shapes and sizes of certain plant pathogens in relation to a plant cell. Bacteria, mollicutes, and protozoa are not found in nucleated living plant cells.

From: G.N. Agrios. 2005. Plant Pathology. 5th edition. Elsevier AP.

Production Opportunities:

Heirloom vegetables

High tunnel production Urban agriculture and local foods

More fruits and vegetables newenglandvfc.org

Organic production

Introduction and Background

Production Limitations:

- biotic stress (diseases)
- abiotic stress (drought, salt, temperature)
- efficient use of water, nutrients, and land resources; decreased environmental impact

Factors that have led to the increased need to manage soilborne pathogens:

- Intensification; less rotation; increased pathogen inoculum
- reliance on susceptible cultivars to meet specific market demands (e.g. heirlooms)
- global movement & local invasion of novel pathogens
- transition to organics and high tunnels practices
- needs-based practices for resource-limited farmers
- loss of soil fumigants e.g. methyl bromide (MeBr)

PROJECT GOAL: To amplify the *productivity and profitability* of U.S. fruiting vegetable enterprises by integrating grafting technologies as both sources of income and production tools.

MECHANISM: Coordinated trans-disciplinary, stakeholder-based, and systems-oriented research, extension and education project that addressed all points on the grafting and crop production value chain.

Sites of U.S. Vegetable Grafting Research-Extension-Teaching Activity

SCRI Team other academic teams that have worked or now work on vegetable grafting

USDA SCRI CONTACTS

Partners – (Third Party Match)

Practice

Science

53 private partners representing the global diversity of the industry including:

Multiple farmers throughout the US (OFR)
Grower Associations
Automation/Robotics companies
Seed companies (especially rootstock seeds)
Propagators/transplant growers
Consultants & other Stakeholders

Expand or create profitable business opportunities

Practice Science

PRACTICE: Grafting of vegetable crops: Translating international knowledge and experience and adapting it to USA systems of production.

THE REAL

SCIENCE: Understanding the mechanisms – •population structure and dynamics of pathogens •host genetics – QTL mapping •plant physiology – cool storage

OUTCOMES HAVE: Direct and Indirect Benefits

The Practice can direct the Science and the Science can inform the Practice

Tomatoes: Tactic Diversification

Grafting = RS x "YFT"

OPTIMIZE ROOT GENETICS

Trade show exhibition of a seed company, demonstrating vigorous root development of rootstock compared with scion.

Courtesy C. Kubota

Trial introduction of grafting to open-fields

Use of Unrooted Grafted Vegetable Cuttings

PI: Chieri Kubota

Regional importance of various soilborne tomato pathogens in North Carolina

ECOLOGICAL ZONE

Louws et

Pathogen	Coastal Plain	Piedmont	Mountains	Graft Potential
Verticillium dahliae race 1		*	***	****
Verticillium dahliae race 2		*	****	**
Fus. oxy. f.sp. lycopersici race 0 or 1	****	****	****	****
Fus. oxy. f.sp. lycopersici race 2	*	**	****	**
Ralstonia solanacearum (race 1)	****	***	*	****
Sclerotium rolfsii	****	**		***
Phytophthora capsici	***	***	***	*
Meloidogyne incognita	****	**	*	****

Alex Hitt Peregrine Farm Ken Dawson Maple Spring Gardens Stefan Hartmann Black River Organic Farm

(Photos by Suzanne O'Connell, NCSU)

DOING AN ON-FARM RESEARCH For example: 3 treatments Planting different treatments....

randomize

Harvest area

Low area?

- Fusarium oxysporum f. sp. lycopersici
 - Fusarium Wilt
 - Soil Inhabitant
 - Genetic Resistance

Results

Root Knot Nematode

Meloidogyne incognita race 1

Root Knot Nematode

Meloidogyne incognita race 1

Clinton HCRS - 2007

Least Significant Difference at P=0.05

RKN Populations

Root-knot nematode soil populations / 500 cc soil							
First Harvest Terminal Har							
Non-grafted	8357 D	1964 Y					
Self-grafted	8751 D	1228 Y					
Telone II	379 B	1260 Y					
Big Power	77 A	40 Z					
Beaufort	2680 C	2542 Y					
Maxifort	3091 C	1251 Y					
ISD based on P = 0.01							

LSD based on P = 0.01

Mi gene reacted differentially: 'Big Power' rootstock appeared to confer complete resistance or was heat stable.

Southern Blight

Sclerotium rolfsii - Wide host range – Resistance in *L*. pimpinellifolium • (*Leeper, 1992*) No resistance in commercial cultivars

 Serendipitous finding

 Inter-specific rootstocks provided effective resistance to southern blight

Ralstonia solanacearum

- Southern Bacterial Wilt
- Colonizes Vascular tissue
- Tropical Environments
- Soil Inhabitant
- Wide host range

Disease Progress Curves Jackson Co. 2013

Days after transplanting

Yield 2013 Jackson co.

On Farm Research: Large scale grafting on 8.1 ha (101 ha tomato farm)

Grafting to Manage Bacterial Wilt

Verticillium Wilt

• Verticillium dahliae

- Loss of vigor
- Wilting and leaf necrosis
- Favored in temperate climates
- Race 2 prevalent in WNC
 (Bender & Shoemaker, 1984)

Cedar Meadow Farm

Cedar Meadow Farm – Lancaster County, PA

Cedar Meadow Farm

Lancaster County - 2008

2014 Johnson County On-farm High Tunnel Trial

Integrating Grafting and High Tunnels

Cumulative Harvest Yield: CEFS, 2008

O'Connell et al 2012 HortScience Sydorovych et al. 2015, in prep Table 2: Examples of rootstock names or codes and level of disease control observed through on-farm and research station experiments in North Carolina.

		(common 3; new	Fusarium ly called ra codes are 0	ace 1, 2 & , 1 & 2)	Verticilliu	m (Vd ^e)	Root Knot Nematode ^b			
Rootstocks	ToMV ^{cd}	FOL 0	FOL 1	FOL 2	race 1	race 2	Mi (race1)	Rsf	SB	
Solanum lycopersicum (interspecific hybrids)	n x Solanu) ^g	m sp.								
Beaufort	5 ^h	5	5	0	5		4	1	4	
Big Power	5	5	5	0	5		5	1	4	
Maxifort	5	5	5	0	5	2	4	1	4	
Robusta	5	3		0	5			1		
TMZQ	5	5	5	0	5	0		1		

Description of Commercial Tomato Rootstocks as of November 20, 2014

Common Tomato Diseases and Pests and usceptibility Characteristics

Rating rootstock characteristics is complex. For example, strains of pathogens differ and plant responses to them are rarely "yes" or "no." Therefore, many approaches are used to rate rootstock characteristics. This table is a compilation of publicly available information provided by seed companies in catalogs and at websites. Additional information from peer-reviewed technical and scientific reports is available in the table Addendum. The table is to be updated often.

Rootstock	Bacterial Wilt	Corky Root Rot	Fusarium Wilt Race 1	Fusarium Wilt Race 2	Fusarium Crown and Root Rot	outhern Blight	Verticillium Wilt	Nematode	Tomato Mosaic Virus	Tomato potted Wilt Virus	Developer
Aegis			R	R	R		R	R	R		<u>Takii</u> Seed
Aibou			R	R	R			R	R		Asahi Industries
Akaoni									R		Asahi Industries
Aligator		R	R	R	R		R	R	R		Gautier Seeds
Anchor-T			R	R	R		R	R	R		<u>Takii</u> Seed
Aooni			R	R			R	R	R		Asahi Industries
Arnold	R		R	R	R			R	R		Syngenta Seeds
Armada			R	R	R		R	R			Takii Seed
Armstrong		R	R	R	R		R	R	R		Syngenta Seeds
B.B.			R	R	R		R	R			Takii Seed
Beaufort		R	R	R	R		R	R	R		DeRuiter Seeds
BHN 1053											BHN Seed
BHN 1054											BHN Seed
BHN 998											BHN Seed
Block	R		R	R	R		R	R	R		Sakata Seed
Body		R		R			R	R	R		Bruinsma Seeds
Bolante			R	R	R		R	R	R		Takii Seed
Brigeor		R	R	R	R		R	R	R		Gautier Seeds
Bruce RZ		R	R	R	R		R		R		<u>Rijk Zwaan</u>

Notes: Blank -susceptible or information is not available R - Resistant (full or partial) For additional information on rootstock descriptions please contact developer directly.

A This table was developed with support provided by USDA-National Institute of Food and Agriculture (NIFA) (Specialty Crop Research Initiative Award # 2011-51181-30963; "Development of Grafting Technology to Improve Sustainability and Competitiveness of the U.S. Fruiting Vegetable Industry"), institutions participating in that project and their collaborators. Please direct questions and comments about the table to Dr. Matthew D. Kleinhenz, Dept. of Horticulture and Crop Science, The Ohio State University-OARDCPage 1 of 5

currently under revision

Propagation Costs

- Proportion of added costs
 - e.g. seed costs (%) = (SEED_{graft} SEED_{non}) / (TOTAL_{graft} TOTAL_{non})

Cost analysis for use of grafted plants

Added yield per plant (lb) needed to compensate for higher transplant prices - tomato

							55
Transplant price premium	\$ 0.40	\$ 0.80	Sales \$ 0.80	price (\$/lb) \$ 1.60	\$ 2.00	\$ 2.40	\$ 2.80
\$ 0.50	1.79	0.74	0.46	0.34	0.27	0.22	0.19
\$ 0.75	2.68	1.10	0.69	0.51	0.40	0.33	0.28
\$ 1.00	3.57	1.47	0.93	0.68	0.53	0.44	0.37

Transplant price premium= Price grafted – Price non-grafted A baseline yield = 9.3 lb/plant

Data by Olya Rysin & Frank Louws HortTechnology (NCSU)

(A)

Unique product lines for retail market

FELLOW PE

TOMAT

RED PEAR

RISK: " shifty enemies" Invasive species "Know your enemy"

Over reliance on grafting in the absence of other IPM tactics:

Re-emergence of minor pathogens. *Colletotrichum coccodes*, *Rhizoctonia* (AG-4) and other pathogens (Garibaldi et al. 2008; Minuto et al. 2008; Minuto et al. 2007).

Grafting can double or triple your chances of spreading seedborne and mechanically transmitted pathogens (e.g.) Clavibacter, Acidovorax, viruses.

Market Niche

System

Simplicity

LTD rotation + organic Soilborne diseases Indeterminate Heirloom

3-yr rotation + fumigation No soilborne diseases Determinate Green market

Length of Harvest

Extension in Organic Systems

 $\mathbf{A} + \mathbf{B} = \mathbf{X}$

A

R

E

B

Х

SCRI GRANTS PROGRAM

USDA Proposal # 2011-01397

THANKS!

United States Department of Agriculture

National Institute f of Food and Agriculture

North Carolina Tomato Growers Association

NORTH CAROLINA VEGETABLE GROWERS ASSOCIATION