Farm the Sun for Sustainable Agriculture UCCE - Climate Action & Agriculture Symposium

May 30, 2019 San Marcos, California LTS SOLAR ENERGY 18827 RANGELAND RD. RAMONA, CALIFORNIA 92065 LSLOMINSKI@AOL.COM 760-505-6822 CA 983336 NABCEP CERTIFIED

Solar and Agriculture

- Farming the Sun is Productive Climate Action!
- On-Site Water and Energy Production with Solar Power
- Environmental Win through Carbon Footprint Reduction
 - Local food production reduces Transportation & Energy costs
 - Well water saves evaporation from canal and river sources
 - Solar energy the lowest cost, cleanest source of energy for ag customers
- Farming the Sun is Very Cost Effective (Payoff in under 4 years)
- Challenges
 - Permitting (larger systems) (impervious vs pervious)
 - Utility rates and Billing Administration
 - Solar Rights Act
- Case Studies (Farm ACW, Beacon Sun Ranch, Others)

LTS Solar Energy

- Customer Sited Solar Electric Power
 - Connection of a solar system on the customer's side of the electric meter to offset that supplie by utility
 - Net Metering / Net Metering Aggregate

1. Solar array short circuit current.

2. Inverter rated current at max inverter rating

Net Metering

Solar System Block Diagram 50 kWdc Solar System

The High Cost of Water Transportation

- 20% of electricity production in the state of CA is used for moving water
- Evaporation from surface storage
- Food transport carbon footprint

Storage

- Utility
- Field Capacity Changing Irrigation Patterns
- Ground Water
- Elevated Water Gravity Feed Water Supply
- Cold Storage (Ice, eutectic salts)
- Battery
 - Demand (Peak Load) Reduction
 - Backup (critical loads)
 - 3-5 year payback (with SGIP incentives)

Solar and Storage for Demand Savings

This chart shows the added value provided by integrating an energy storage system with a solar energy system.

Source: SolarTech`

Solar and Load Mgt

Project Approaches

- Self-Peform
- Contract Install
- Turn-key

Solar System Costs

(100 kWdc System Producing 160,000 kWh/yr)

- PV Modules \$ 60,000
- Structure \$ 25,000
- Inverters \$ 15,000
- Permitting, Design Installation \$ 50,000
- Profit <u>\$ 50,000</u>
 Total \$ 200,000

Solar Financials

(100 kWdc System Producing 160,000 kWh/yr)

- Cost
- 30% FITC (yr 1)
- MACRS (front loaded)
- Energy Savings*

NET AT END OF YR 5

- Eff. Electric Costs with MACRS: \$ 2719 (pmt) /160,000 = **\$.02/kWh**
- * Not Incl tax savings lost from energy deductions

- \$-200,000
- \$ 60,000
- \$ 34,000
- \$ 32,000/year*
- \$ + 54,000

Eff. Electric Costs without MACRS: \$ 14375 (pmt) /160,000 = \$.09/kWh

Solar Financials (100 kW System Producing 160,000 kWh/yr)

Solar Ag Project

Project Summary	Proj	ect kW		100.00
Annual kWh Prod. =				160,000
Purchase Price			\$	200,000
5 Year tax benefits =			\$	94,000
1 Year Out of Pocket Costs			\$	106,000
1st Year energy savings =			\$	-
1st Year Renewable Energy Credits =			\$	-
1st Year Depreciation Benefits =			\$	-
25 year NPV =				\$338,329
Break Even (yrs)				5
IRR =				23.0%
Project Costs				Notes
Total System Price =	\$	200,000		
Initial Rebates	\$	-		
Net Customer Price =	\$	200,000	Initic	I Book Value (IB
Amount Financed =	\$	-		
US tax credit @30%	\$	60,000	Appli	ies to IBV
State tax credit @ 35%	\$	-		
Yr 0 Dep. Benefits =	\$	34,000	mid	year MACRS
Yr 0 Net Out of Pock =	\$	106,000		

Project Input (From Project Defin	nition)		
Project size in kWac (DC) =	100	Estimated Tax Rate (Comb) =	20.0%
		NPV Interest Rate (%) =	2.00%
Finance Terms (years) =	0	Finance Interest Rate (%) =	5.00%
Customer Energy Saving (\$/kWh) =	\$ 0.2000	Annual increase energy \$	3.0%
PBI Production Rebate (\$/kWh)	\$ -	Renewable Energy Credits	
PBI Years	0	Degradation	0.25%

Cash Flow Analysis																			
Year	0		1		2		3		4		5		6	7	8	9	10		11
CSI Revenue \$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$ -	\$	-
Payment \$	(200,000)	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$ -	\$	-
Operation and Maintenance Costs		\$	(1,600)	\$	(1,648)	\$	(1,697)	\$	(1,748)	\$	(1,801)	\$	(1,855)	\$ (1,910)	\$ (1,968)	\$ (2,027)	\$ (2,088)	\$	(2,150)
Renewable Energy Credits (Carbon Cr)		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$ -	\$	-
HOST CUSTOMER ENERGY PAYMENTS		\$	32,000	\$	32,878	\$	32,795	\$	32,713	\$	32,632	\$	32,550	\$ 32,469	\$ 32,388	\$ 32,307	\$ 32,226	\$	32,145
Sub-Total		\$	30,400	\$	31,230	\$	31,098	\$	30,965	\$	30,831	\$	30,695	\$ 30,558	\$ 30,420	\$ 30,280	\$ 30,138	\$	29,995
Tax Expense		\$	(6,080)	\$	(6,246)	\$	(6,220)	\$	(6,193)	\$	(6,166)	\$	(6,139)	\$ (6,112)	\$ (6,084)	\$ (6,056)	\$ (6,028)	\$	(5,999)
Net Savings & Tax Expense		\$	24,320	\$	24,984	\$	24,878	\$	24,772	\$	24,665	\$	24,556	\$ 24,447	\$ 24,336	\$ 24,224	\$ 24,111	\$	23,996
Tax Credits \$	60,000	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$ -	\$	-
Depreciation Tax Benefit \$	34,000	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$ -	\$	-
Net Cash Flow \$	(106,000)	\$	24,320	Ş	24,984	\$	24,878	\$	24,772	\$	24,665	\$	24,556	\$ 24,447	\$ 24,336	\$ 24,224	\$ 24,111	Ş	23,996
Cumulative Cash Flow \$	(106,000)	\$	(81,680)	\$	(56,696)	\$	(31,818)	\$	(7,046)	\$	17,619	\$	42,175	\$ 66,621	\$ 90,957	\$ 115,181	\$ 139,292	\$	163,287

Challenges & Opportunities

- Permitting Storm Water Pollution Prevention Plans and Mitigation
 - Triggers with > 1 acre disturbance
 - Impervious vs pervious
- Utility Rate Administration for NEM
- Solar Rights Act Solar Projects Review limited to Health and Safety
- CEC-REAP \$/Carbon Reduction Proposal Ranking

LTS Solar Energy Case Studies

- Avocado Farms and Vineyards Large to Small Applications
- Water Districts, Municipalites
- Commercial and Industrial Solar Power Systems
- Ground and Roof Mount

Ramona, CA

Escondido, CA

Fallbrook, CA

Valley Center Municipal Water District – 1.1 MW Completed December 2008

Farm ACW – Fallbrook CA

Pauma Valley Avocado Farm

330 kW Fallbrook, CA Farm

Borrego Water District – 100 kW

Avocado Ranch, Poway – 732 kW

Solar Cados

Citrus Farm, Borrego Springs – 265 kW

Grapefruit Orchard, Borrego Springs, CA

Avocado Farm, Ramona 228 kW

Date Palm Farm, Borrego Springs – 117 kW

120 kW 100 kW 80 kW 60 kW 40 kW 20 kW

Innovative Solar & Shade System

LTS Solar Energy

- LTS Solar Energy is a Full Service Solar Project
 Development, Management and Construction Company
- Larry Slominski Principal
 - BSME, NABCEP Certified, CA-46 Contractor, PE (inactive)
 - 40 years of solar electric industry experience`
- We develop and execute solar projects for you Self-Perform (DIY), Turn-key, third party leases or PPAs
- Experienced Comprehensive Project Execution focused on Ag and Water Sector Customers

LTS SOLAR ENERGY Lslominski@aol.com 760-505-6822

CA #983334

