Current control strategies, recommendations and issues on the management of avocado laurel wilt in Florida

Jonathan Crane¹, Daniel Carrillo¹, Romina Gazis¹, Bruce Schaffer¹, Edward Evans¹, Fredy Ballen¹ and Jeff Wasielewski²

¹Tropical Research and Education Center

²Miami-Dade County Extension

Agriculture National Institute of Food and

Aariculture

July 29-Aug. 2, 2019: Laurel wilt-ambrosia beetle seminar series, California

Acknowledgements – thanks to

Sponsors

- USDA-NIFA grant (2015·51181-24257: Laurel wilt of avocado: Management of an unusual and lethal disease)
- University of Florida/IFAS Extension and Research
- UF/IFAS Extension Miami-Dade County
- Florida Avocado Administrative Committee
- California Avocado Commission
- University of California Extension

Additional acknowledgments

University of Florida, IFAS

- Mr. Fredy Ballen, Agricultural Economist
- Dr. Daniel Carrillo, Tropical Fruits Entomologist
- Dr. Ed Etxeberria, Plant Physiologist
- Dr. Edward Evans, Agricultural Economist
- Dr. Karen Garrett, Plant Pathologist
- Dr. Romina Gazis, Plant Pathologist PDC/OH
- Dr. Xavier Martini, Entomologist
- Dr. Kirsten Pelz-Stelinski, Citrus Entomologist
- Dr. Randy Ploetz, Plant Pathologist Tropical Fruits
- Dr. Jeffrey Rollins, Plant Pathologist
- Dr. Bruce Schaffer, Environmental Plant Physiologist
- Dr. Lukasz Stelinski, Citrus Entomologist
- Mr. Jeff Wasielewski, Tropical Fruits Extension

Agricultural Manager, Miami-Dade Co.

- Mr. Charles LaPradd, Manager FDACS-Division of Plant Industry
- Dr. Trevor Smith, Director
- Dr. Greg Hodges, Assistant Director
- Dr. Tyson Emery, Section Chief

Florida Avocado Administrative Committee

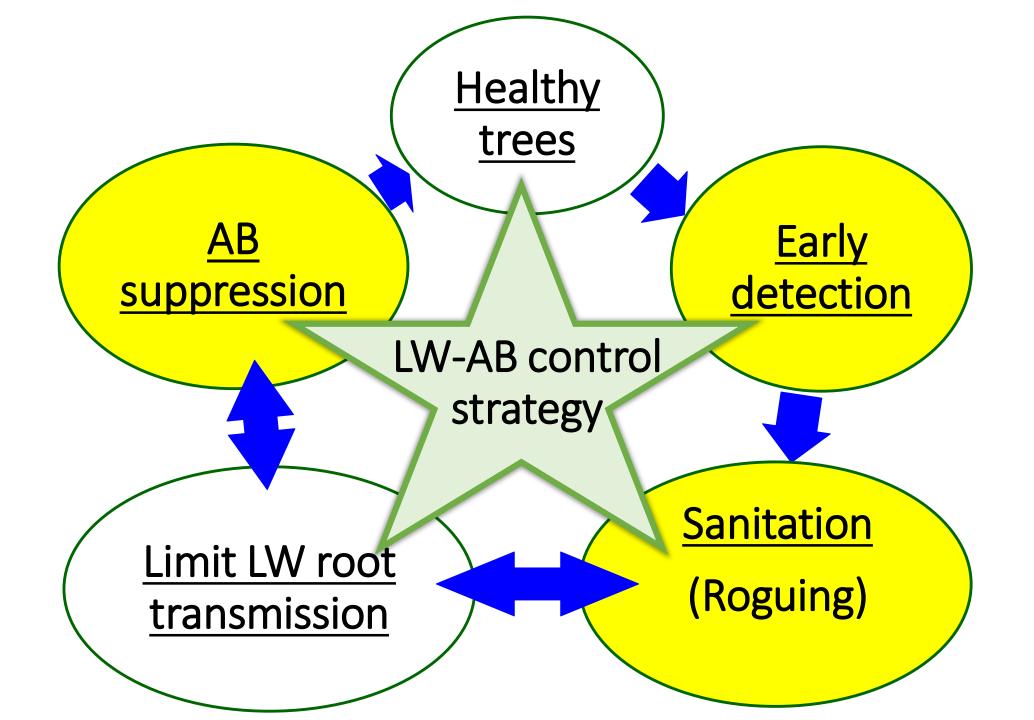
- Ms. Medora Krome, Chairwomen
- *Mr. Alan Flinn, Administrator Laurel Wilt Panel*
- Avocado producers and UF-IFAS

Avocado Industry Advisory Panel members (USDA-NIFA grant (2015-51181-24257)

- Armando Monterroso, Brooks Tropicals
- Louis Dessaint, Brooks Tropicals
- Medora Krome, Grower and Chair of Avocado Administrative Committee
- Michael Hunt, Grower
- Victoria Barnes, Grower
- Mark Philcox, Grove Services
- Diego Rodriguez, Diego Rodriguez Farms
- Bienvenido Suero, New Limeco
- Margie Pikarsky, Bee Heaven Farm
- Carlos de la Torre, Grower
- Alan Flinn, Administrator, Florida Avocado Committee
- Charles LaPradd, Agricultural Manager, Miami-Dade County

How to lose three trees in 26 days

Credits: Carlos de la Torre



Current recommendations and strategies for control of the laurel wilt pathogen and ambrosia beetle vectors

Aariculture

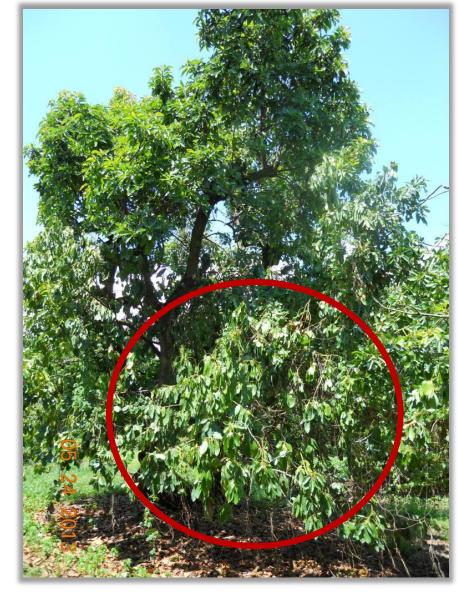
Bottom lines

- The most efficacious and cost-effective control for the LW pathogen is to detect symptomatic trees as soon as possible through frequent scouting and immediately remove (uprooting) and destroy the tree (sanitation) - roguing
- Reduce the potential for beetle transmission of LW
 - Sanitation (tree destruct)
 - Timed-limited and directed insecticide applications
 - Pruning programs to enhance light penetration and duration into tree canopies

Limit laurel wilt pathogen transmission

To prevent this, immediate sanitation is required

Root graft transmission


Ambrosia beetle transmission

Scouting - key Early symptoms to look for

- Commonly sections of the tree show symptoms and other sections do not
- Part of the canopy is wilting

United States

Department of

Agriculture

National Institute of Food and Agriculture

Early detection of laurel wilt

Best – no visible symptoms

Partial canopy wilting – still green

Obvious symptoms – desiccation

Ideal stage to detect

Okay to good stage to detect

May be too late for adjacent trees'

Methods - early detection of laurel wilt

Manned helicopter survey

Drones – visible light, infra-red, specific spectral ranges

Currently
Most common

Scouting from the ground

WorksLimited

Canine – olfactory detection

Drones opportunities/uses

- ID early -symptomatic LW affected (infected) trees
- Allows quick implementation for LW control
- Have the potential to frequently and quickly scout orchards
- Barrier FAA rules and regulations

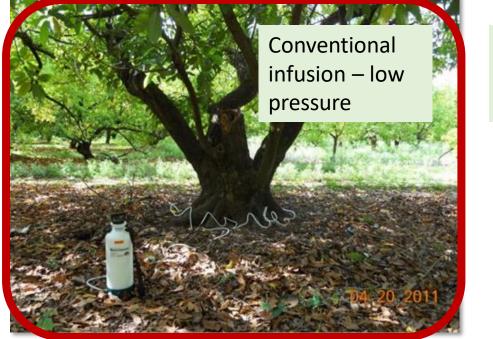
Photo credit: C. de la Torre

National Institute of Food and Agriculture

Immediate roguing (sanitation) – the most important step

¿Prophylactic fungicide applications?

Photo Credit: S. Glucksman


Considerations

- Infusion (IV-like procedure)
- Injection
- Labor intensive
- Material costs
 - Equipment and fungicide (Tilt[®])
- Must be repeated periodically
- Expensive to moderately expensive

Sustainability issues - new information

- Infusion tree damage, too costly
- Injection slow to protect, potentially incomplete coverage/protection
- Recent data has found that very few LW spores (CFUs) can induce disease
 - AB populations have increased
 - Some contaminated with LW pathogen
- Our lack of knowledge on injection
 - Time from injection to protection?
 - Incomplete protection?
 - Tree damage over time
 - Root-graft grove-wide biology

Methods of systemic fungicide application

Passive infusion – transpiration

Hybrid infusion-injection

Hybrid infusion-injection

Wedgle hydraulic injection system

Prophylactic fungicide treatments?

Current status

- 1,200 acres are under an injection program (claim ~2% loss due to LW)
- 400 acres under a spot treatment regime with infusion
- 96 acres under an infusion program

Recommendation - considerations

- Conduct a cost-benefit analysis
- Current situation, LW now endemic and AB populations high
- Sustainability tree damage assessments with time
- Cost of control options
 - LW disease outbreaks w/out fungicide
 - Cost of control with fungicide applications

Ambrosia beetle suppression and control

Current strategy for suppression of AB

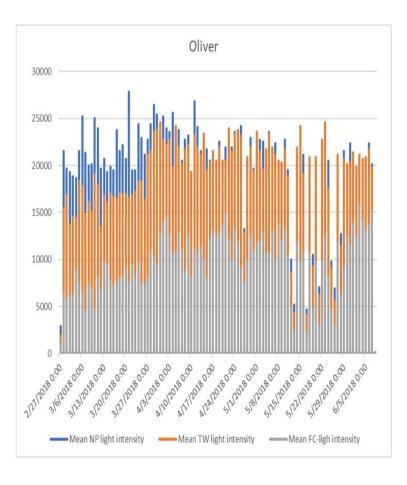
Ambrosia beetle (AB) control

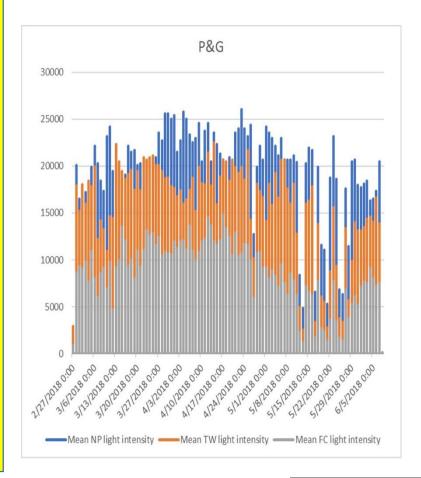
- Chip or shred infested wood
- Spray chips with insecticide (Hero[®], Malathion, or Danitol[®]) + adjuvant
- Tree directed spray application of trees in a 1-acre grove area with Malathion, Agri-Mek®SC, Talstar®S, Danitol® or Hero®* + adjuvant or BotaniGard® (1-2 times)
- Implement pruning program to increase amount and hours of sunlight

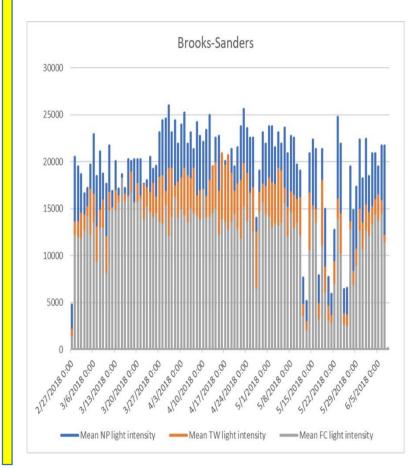
*, non-bearing trees only

Light management: the effect of light duration and levels on AB activity

Photo credit: D. Carrillo

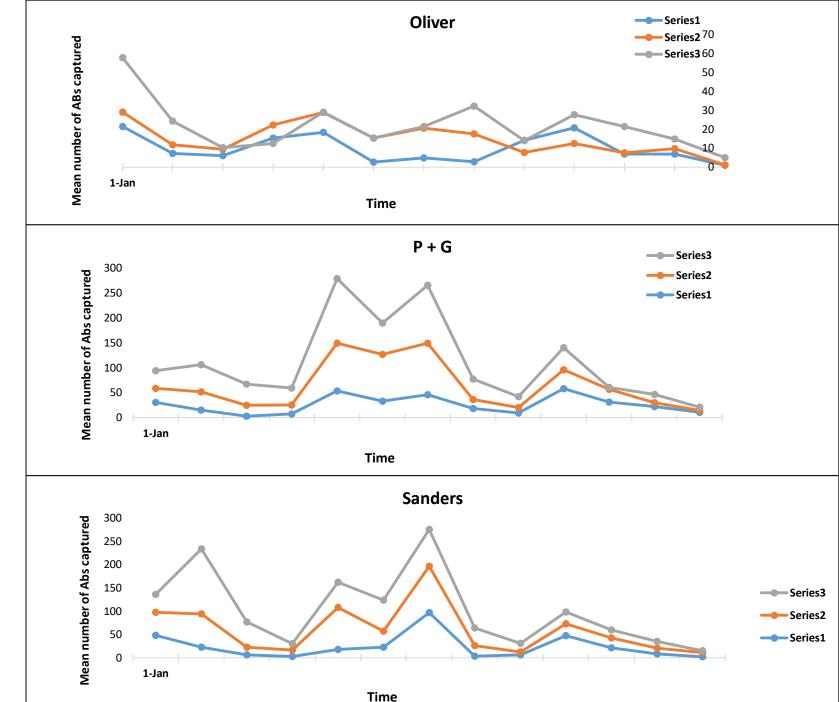





Three light environments

- Full-canopy, minimal to rarely pruned
- Top-worked within last 3-4 years
- Newly planted areas of existent groves

Light levels


3 grove light levels

Full canopy
 Top-worked
 New planting

Ambrosia beetles captured over time

Full canopy - most
 Topworked – sign. lower
 New planting – sign. lower

Consistently more AB activity in full-canopy areas of a grove compared to top-worked and newly planted areas

Recommendations

- Re-institute pruning programs
 - Top-hedge
 - Selective pruning
- Rejuvenation program
 - Hatrack
 - Stump
- Top-work to new cultivars
 - #1 stump
 - #2 regrow selected shoots
 - #3 graft to new cultivar

Hatrack

Stump – topwork, 100's acres

United States Department of Agriculture

National Institute of Food and Agriculture

Mitigation strategies Recent and potential changes

- Replanting avocado trees
 - 79% of avocado acreage surveyed
 - Of that, 77% of trees lost, were replanted
 - Intent on 1-for-1 replacement

Why?

- Not root grafted to adjacent neighbors
- Less attractive to AB
 - Light regime is high
 - Wood diameters smaller

Additional mitigation strategies

Replant alternative fruit crop

Longan

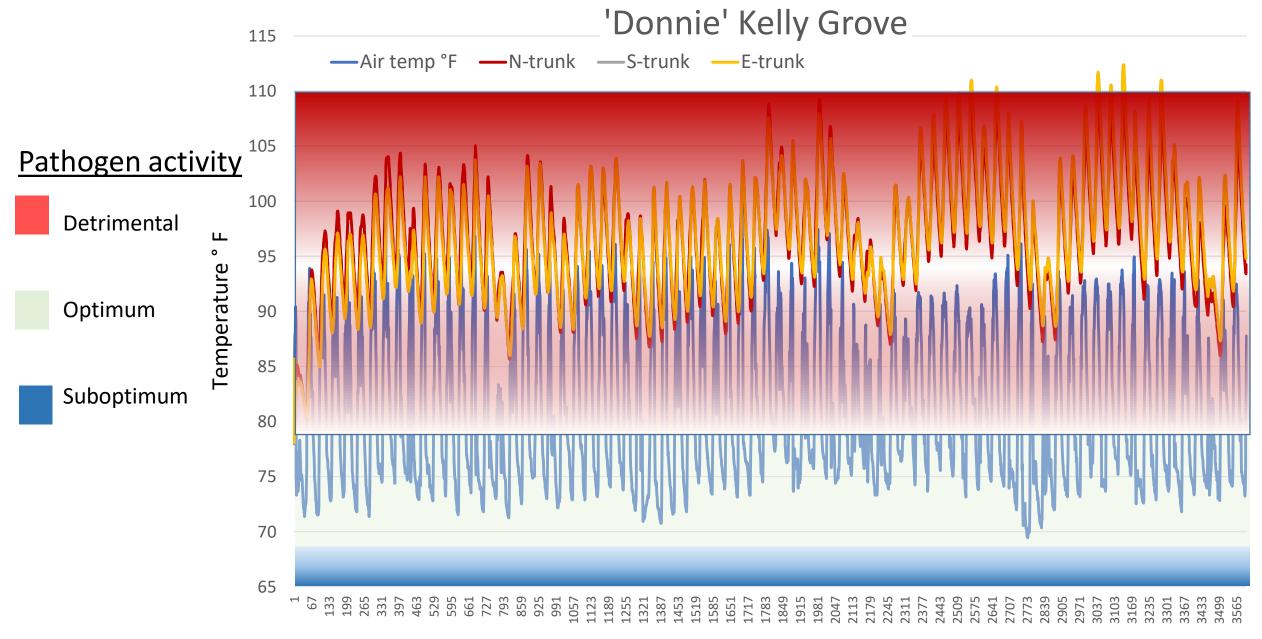
Exit fruit industry

- Nursery crops
- Vegetable crops
- Development
 - Housing
 - Energy
 - Alternative ag bread/breakfast, destination

Issues to investigate

Stump tree system (barrier method)

- Attempt to limit the number of trees destroyed adjacent to LW affected trees and limit spread of LW
 - Remove initial symptomatic tree
 - Hatrack or stump adjacent trees
 - Stop transpiration of trees adjacent to a LW affected tree



Bagging treatments

- Symptomatic trees are sampled for LW and stumped
- Trees covered with pallet bags and sealed at soil level
- Insecticide may or may not be applied to the stump
- Monitored 3"-4" inside stumps with Onset Tidbit temperature probes

Time (June 16 to August 28, 2018); 75 days

Future applied research

Pathogen

- Improve diagnostics
- Continue the search for fungicide materials and formulations
 - Old materials, new formulations
 - Combination of materials
 - Movement synergists
- Biocontrol agents
 - Antagonists

AB vectors

- Continued evaluation of contact and systemic insecticides
- Continued evaluation of attractants and repellents
- Continued evaluation of biocontrols
 - Beauveria strains
 - Other organisms

United States

Aariculture

Department of

National Institute of Food and Agriculture

Future applied research

Plant Physiology

- Understand rootstock and scion susceptibility to LW pathogen
- Screen germplasm for tolerance

Horticulture

- Continued exploration of grove environmental conditions that reduce the incidence of LW
 - Light management
 - Nutrient management

Economics

- Continued economic analysis
 - Control measures
 - Mitigation strategies
 - Industry viability

Future extension

- Continue to facilitate the research effort
- Continue
 - Seminar series
 - Field days
 - Internet email, website, video, publications
 - Meetings as needed/requested

- Liaison with industry
 - Industry-research-extension panel
 - Research funding
 - Regulatory agencies
 - Outreach methodology
- Facilitate pest control registrations
- Continue to develop economic and feasible recommendations

Recommendation to California industry

- Determine native and exotic plant LW and AB hosts
- Identify potential pathways of LW introduction
- Identify AB species capable of contamination with and transmission of the LW pathogen
- Work with, support and plan with UC scientists and regulatory agencies to develop a plan for detection, eradication or management if LW is introduced

Agriculture National Institute of Food and

United States

Aariculture

Department of

Thanks for your attention

¿Questions?

FLORIDA

Laurel Wilt website - http://trec.ifas.ufl.edu/RAB-LW-2/index.shtml

Department of Agriculture National Institute

of Food and

Agriculture