Managing Diseases of Major Vegetable Crops in the Palo Verde Valley

Alex Putman, Ph.D. Assistant Cooperative Extension Specialist Dept. of Microbiology & Plant Pathology

> aiputman@ucr.edu 951-827-4212

Blythe, CA September 19, 2019

UC RUNIVERSITY OF CALIFORNIA

University of California Agriculture and Natural Resources

Plant Disease

Susceptible host

Favorable environment Virulent pathogen

Wintermantel et al., 2017

First appears as a light green or light yellow mottle

Wintermantel et al., 2017

Progresses to complete interveinal chlorosis

Wintermantel et al., 2017

Leaves can become thick and brittle

Wintermantel et al., 2017

First appear on oldest leaves, then to younger leaves

Wintermantel et al., 2017

Fruit do not show symptoms but sugars can be reduced

Cucurbit yellow stunting disorder virus

- Vectored by sweet potato whitefly (*Bemisia tabaci*)
- Acquiring the virus
 - Minimum of 2 hours of feeding
 - Most efficient after 18 hours of feeding (> 80% acquisition), increases to 48 hours
- Retains the virus: 7 to 9 days after acquisition
- Transmission dynamics are similar to acquisition
 - After transmission, symptoms may not appear for 3 to 4 weeks

Cucurbit Hosts of CYSDV

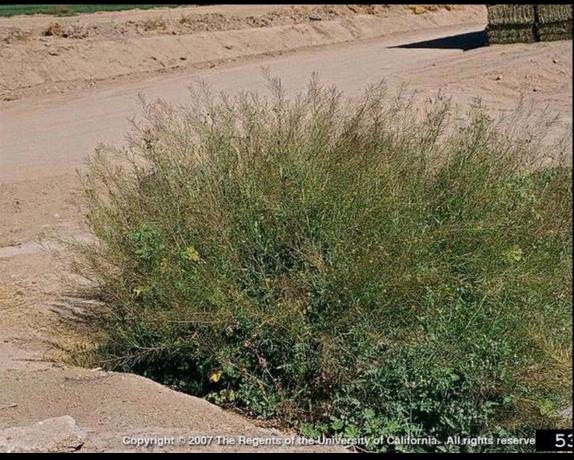
- All cucurbit crops or garden plants: melons, watermelon, cucumber, zucchini
- Cucurbit weeds
- Efficiently transmitted

B. Wintermantel, B. Gilbertson, J. McCreight, E. Natwick

Cucurbit Hosts of CYSDV

W. Cranshaw, Colorado St. Univ.

J.M. DiTomaso, Univ. of California, Davis

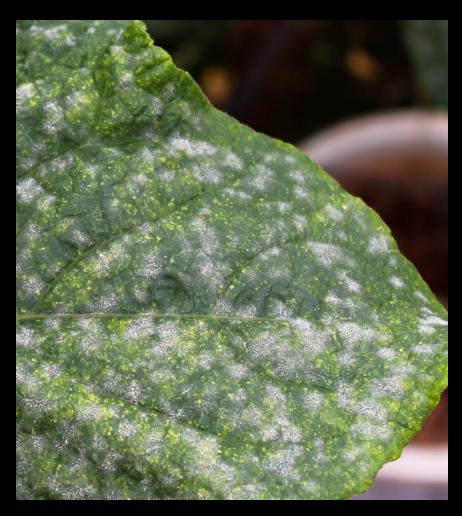

Buffalo gourd (Cucurbita foetidissima)

Non-Cucurbit Hosts of CYSDV

- Key hosts
- Alfalfa (Fabaceae)
 - Survey: high rate of positive detection
 - Transmission: high (one experiment only)
 - Does not show symptoms
- London rocket (Brassicaceae; Sisymbrium irio)
 - Survey: high rate of detection (6 plants sampled)
 - Transmission: high to and from
 - Does not show symptoms

Non-Cucurbit Hosts of CYSDV

J.M. DiTomaso, Univ. of California, Davis

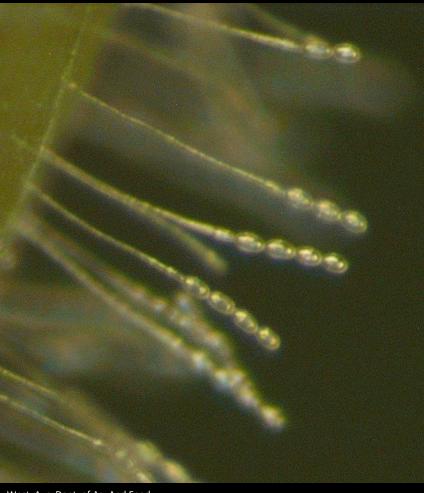

London rocket (Sisymbrium irio)

J.M. DiTomaso, Univ. of California, Davis

Other Non-Cucurbit Hosts of CYSDV

- Other hosts: may be less important as reservoirs
- Snap bean, common bean (Fabaceae)
 - Survey: high rate of positive detection
 - Transmission: low to moderate
 - Shows symptoms
- Silverleaf nightshade (Solanaceae; *Solanum elaeagnifolium*)
 - Survey: high rate of detection (6 plants sampled)
 - Transmission: not tested
- Alkali mallow (Malvaceae; Sida hederacea)
 - Survey: low rate of detection
 - Transmission: low (may be avoided by whiteflies)
 - Shows symptoms

- True fungus
- Obligate biotroph (obligate parasite)
 - Requires living host to grow and reproduce
- About 900 species
 - Can be generalists or host-specific


First appears on older or shaded leaves, on lower surface

Reduces yield, defoliation leads to sunburn

Signs

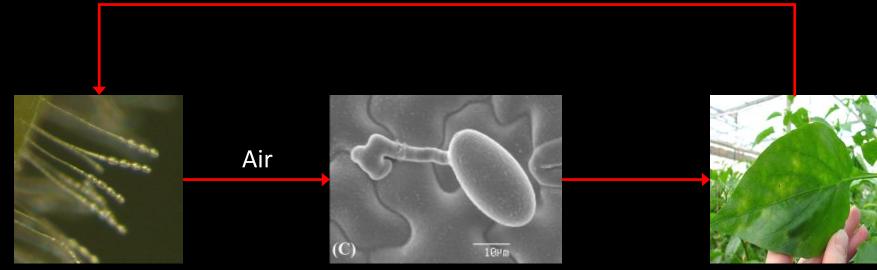
B. Watt, U. Maine

West. Aus. Dept. of Ag. And Food

Spores produced in chains

Podosphaera xanthii

Also infects many different hosts:

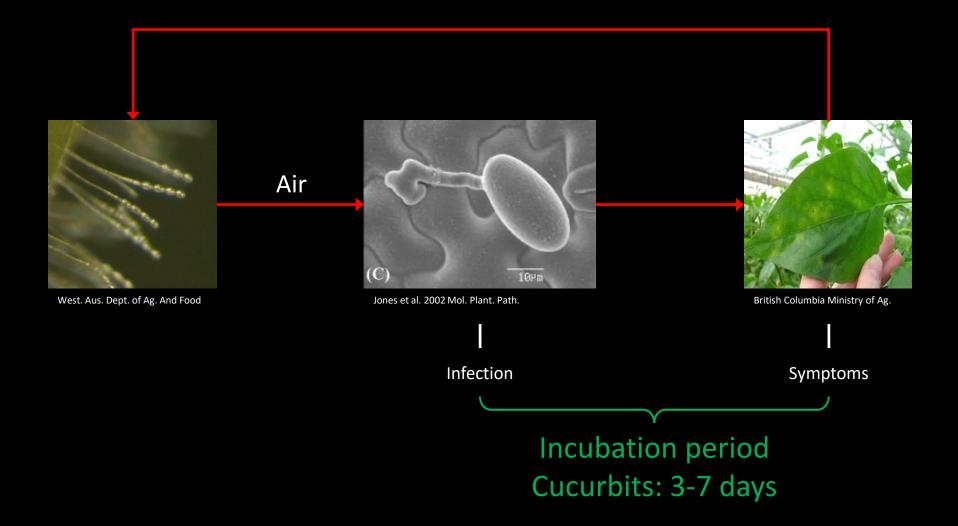

<u>Nightshade (Solanaceae)</u> Eggplant Chili pepper

> <u>Daisy (Asteraceae)</u> Sunflower

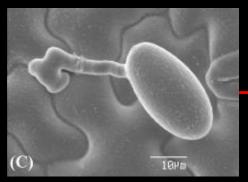
<u>Legume (Fabaceae)</u> Cowpea Bean

Podosphaera xanthii

Disease Cycle



West. Aus. Dept. of Ag. And Food

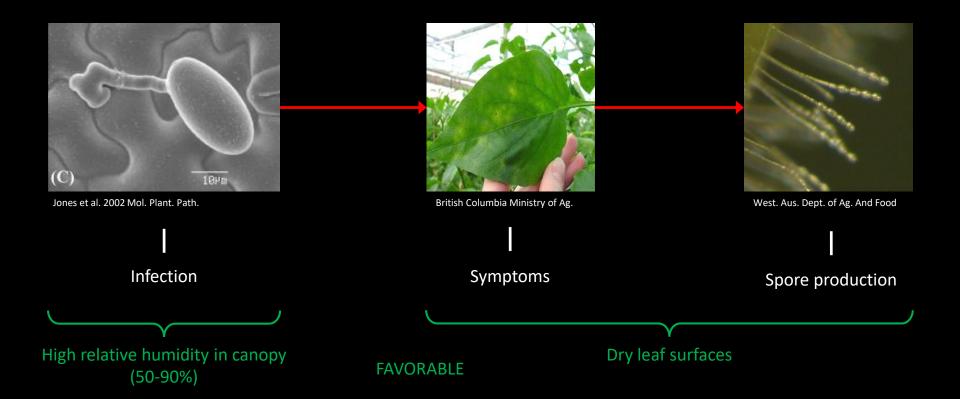

Jones et al. 2002 Mol. Plant. Path.

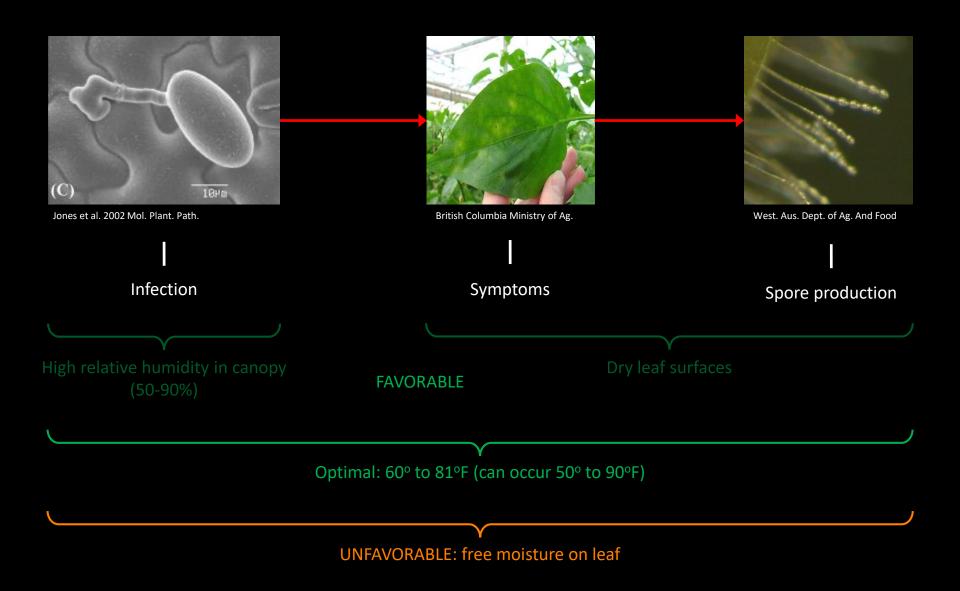
British Columbia Ministry of Ag.

Disease Cycle

Environmental Conditions

Jones et al. 2002 Mol. Plant. Path.


British Columbia Ministry of Ag.


West. Aus. Dept. of Ag. And Food

I Spore production

Environmental Conditions

Environmental Conditions

Host Resistance – Different Sources

- Melon and cucumber
 - Widely available, effective for pathogen races 1 and 2
 - Other races present:
 - Race 3
 - Race S identified in 2003
- Squash and pumpkin
 - Number of copies of one gene
 - One copy = heterozygous; intermediate resistance
- Watermelon: no bred resistance but is naturally the least susceptible

Chemical Management

- Timing
 - Begin early with aggressive scouting
- Preventive program
 - Penetrant fungicides
- Spray coverage throughout canopy
 - Especially to lower leaf surfaces

Cantaloupe powdery mildew fungicide efficacy summary Michael Matheron and Martin Porchas, University of Arizona Cooperative Extension, Yuma Agricultural Center

Trade name	FRAC #	Mean percent efficacy	# of trials	Trade name	FRAC #	Mean percent efficacy	# of trials
Procure	3	95	16	Quadris	11	56	11
Rhyme	3	95	5	Quintec	13	97	19
Rally	3	86	18	Serenade	44	54	5
Mettle	3	82	5	Taegro	44	55	4
Inspire Super	3, 9	94	5	Timorex Gold	46	54	4
Fontelis	7	97	4	Torino	U6	100	7
Endura	7	81	9	Prolivo	U8	98	3
Luna Sensation	7, 11	96	4	Vivando	U8	92	5
Merivon	7, 11	87	3	Microthiol Disperss	M2	97	12
Cabrio	11	72	13	Bravo	M5	68	7
Flint	11	64	13	Actinovate		30	7

Fungicide Resistance in P. xanthii

- FRAC Group 3: DMIs (demethylation inhibitors) reduced sensitivity
- 7: SDHI (succinate dehydrogenase inhibitors) resistance common
- 11: strobilurins (QoI) resistance widespread
- 13: quinoxyfen reduced sensitivity
- U6: cyflufenamid **resistance**
- 50: metrafenone reduced sensitivity

Downy mildew

- Water molds
 - Like Pythium, Phytophthora
- Obligate biotroph (obligate parasite)
 - Requires living host to grow and reproduce
- Over 700 species, generally host-specific

Onion

Lettuce

Spinach

Brassica

Photo: B. Watt, Univ. of Maine

Peronospora destructor

Bremia lactucae

Peronospora effusa

Photo: G. Holmes, Cal Poly-SLO

Hyaloperonospora brassicae

Peronospora destructor

Peronospora destructor

Peronospora destructor

Peronospora effusa

...And Others

Garlic

Spinach

N Hyaloperonospora brassicae

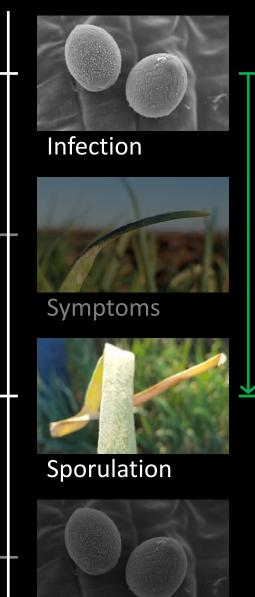
...And Others

Chinese cabbage

Time

Infection

Symptoms



Sporulation

Disease Cycle

Infection

Onion

Spinach

Latent Period

8 to 16 days

9 days

Time

Infection

Symptoms

Sporulation

Onion

- High relative humidity at night
- Previous day air temperature < 80°F
- No rain after midnight

Spinach

- "Warm" and dry morning
- Light winds

Time

Infection

Symptoms

Sporulation

Onion

- High relative humidity at night
- Previous day air ullettemperature < 80°F
- No rain after \bullet midnight

ullet

Spinach

- Warm and dry morning
- Light winds

- Leaf wetness beginning at sunrise
- Length of wetness ulletneeded is proportional to air temperature (>~70^oF)
- Moist ullet
- Cool
- Light winds

Time

Infection

Symptoms

Sporulation

Cultural Management

- Minimize leaf wetness
 - Avoid sprinkler irrigation
 - Avoid microclimates prone to high humidity
 - Avoid full canopy during periods of high relative humidity
 - Orient rows with prevailing wind

Fungicides – Spinach

- Ridomil (FRAC Group 4) MZ (M3) or Bravo (M5)
- Orondis Ultra (49 + 40)
- Actigard/Blockade (P01)
- Revus (40)
- Zampro (40 + 45)
- Aliette (P07)
- Ranman (21)
- Kphite (P07)
- Presidio (43)

Mike Matheron, Univ. of Arizona, Yuma (Plant Disease Management Reports, 2015, 2016, 2017, 2018) Steve Koike, UC Cooperative Extension and Neil McRoberts, UC Davis (PDMR 2014, 2015)

Fungicides – Spinach – Organic

- copper
- Milstop
- Taegro
- Timorex
- Oxidate
- Actinovate
- LifeGard

Mike Matheron, Univ. of Arizona, Yuma (Plant Disease Management Reports, 2015, 2016, 2017, 2018) Steve Koike, UC Cooperative Extension and Neil McRoberts, UC Davis (PDMR 2014, 2015)

Spinach – Fungicide Programs

		2016	2017			2018		
Product	FRAC	Α	Α	В	С	Α	В	C
Ridomil Gold	4	1	1	1	1	2	1	1
Quadris	11		1	1	1		1	1
Actigard	P1	2		2, 3	2	1	2	2
Orondis Ultra	49 + 40	1		4	3, 4	2	3	3
Revus	40	3				3	4	5
Zampro	40 + 45					4		
Presidio	43		2, 4					
Prophyt	P07		3					
Forum	40		2					

Within a column, numbers indicate order product was applied within each program

Mike Matheron, Univ. of Arizona, Yuma (Plant Disease Management Reports 2016, 2017, 2018)

Onion Downy Mildew

How does environment affect disease development in controlled conditions?

Do weather models accurately describe disease in the field?

Onion Downy Mildew

How does environment affect disease development in controlled conditions?

Do weather models accurately describe disease in the field?

Make data and tools available to local growers

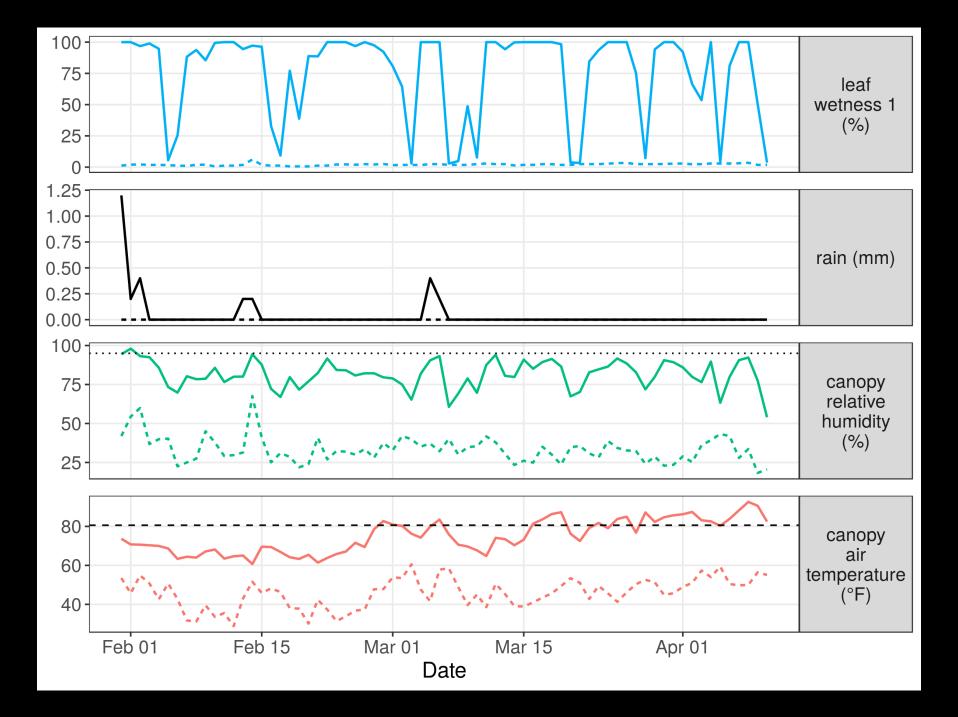
Can weather models be used to time fungicide applications?

Field Trial

Trt #	Model	Interval
1	Standard Calendar	7 or 14
2	DOWNCAST	Weather-based
3	DOWNCAST de Visser	Weather-based
4	DOWNCAST Guelph	Weather-based
5	MILIONCAST	Weather-based
6	ONIMIL	Weather-based
7	Untreated	-
8	Untreated	-

Field Trial

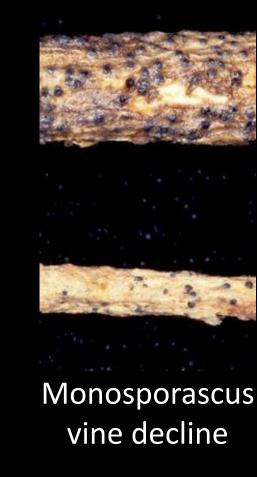
Timing Code	Product	AI	FRAC Code	Product /A	Interval
Α	Ridomil Gold Bravo	mefenoxam + chlorothalonil	4 + M5	2.5 pt	7-14
В	Dithane F-45	mancozeb	M3	2.4 qt	7
С	Orondis Ultra	oxathiapiprolin + mandipropamid	49 + 40	5.5 fl oz	7-10
D	Reason	fenamidone	11	5.5 fl oz	5-10
E	Presidio + Dithane	fluopicolide + mancozeb	43 + M3	4.0 fl oz + 2.4 qt	7-10
F	Zampro	dimethomorph + ametoctradin	40 + 45	14.0 fl oz	5-7


Weather Monitoring

- Two leaf wetness sensors
 - 45 degree angle
- Temp/relative humidity "in canopy"

Weather Monitoring

- Two leaf wetness sensors
 - 45 degree angle
- Temp/relative humidity "in canopy"


Model Output (2017-2018)

	Standard Calendar	DOWNCAST			DOWNCAST deVisser		DOWNCAST Guelph			ONIMIL			
Date	Арр	Spore	Inf	Арр	Spore	Inf	Арр	Spore	Inf	Арр	Spore	Inf	Арр
Feb. 15	-	1.00	1.00	-	0.33	1.00	-	1.00	1.00	-	0.008	0.00	-
Feb. 16	А	0.00	0.00	А	0.00	0.00	А	0.00	1.00	А	0.00	0.00	-
Feb. 28	В	0.00	0.00	-	0.00	0.00	-	0.00	0.00	-	0.00	0.00	-
Mar. 12		0.00	0.00	-	0.67	1.00	-	0.00	0.00	-	0.00	0.00	-
Mar. 14	С	0.00	0.00	-	0.00	0.00	В	0.00	0.00	-	0.00	0.00	-
Mar. 23	D	0.00	0.00	-	0.00	0.00	-	0.00	0.00	-	0.00	0.00	-

We Are Looking for Samples!

Onion downy mildew

Spinach downy mildew

951-827-4212; aiputman@ucr.edu