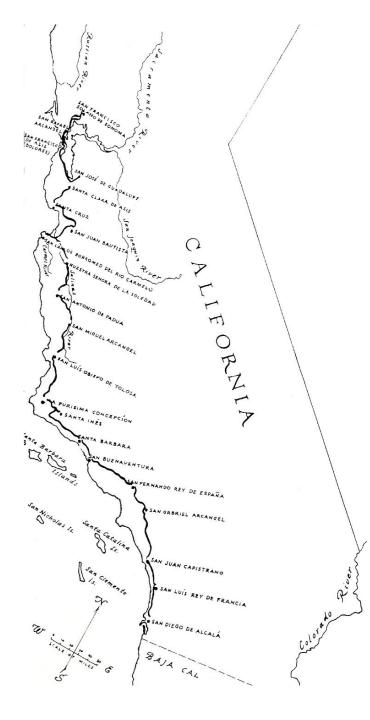
Why Burn?

Morgan Doran

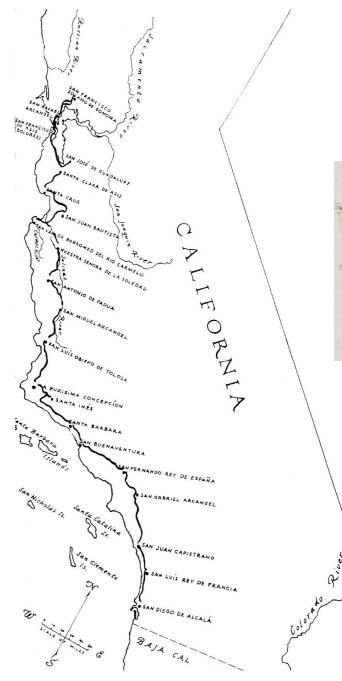
Livestock & Natural Resources Advisor University of California Cooperative Extension



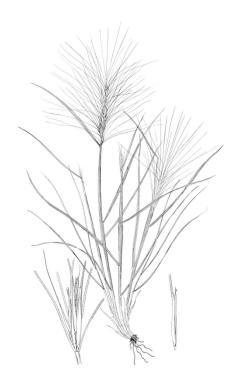
"Getting Into the Weeds"

- Understand the ecology
- Understand the services
- Understand the risks
- Develop landscape goals

Spanish missions in California were established from 1770 – 1823.

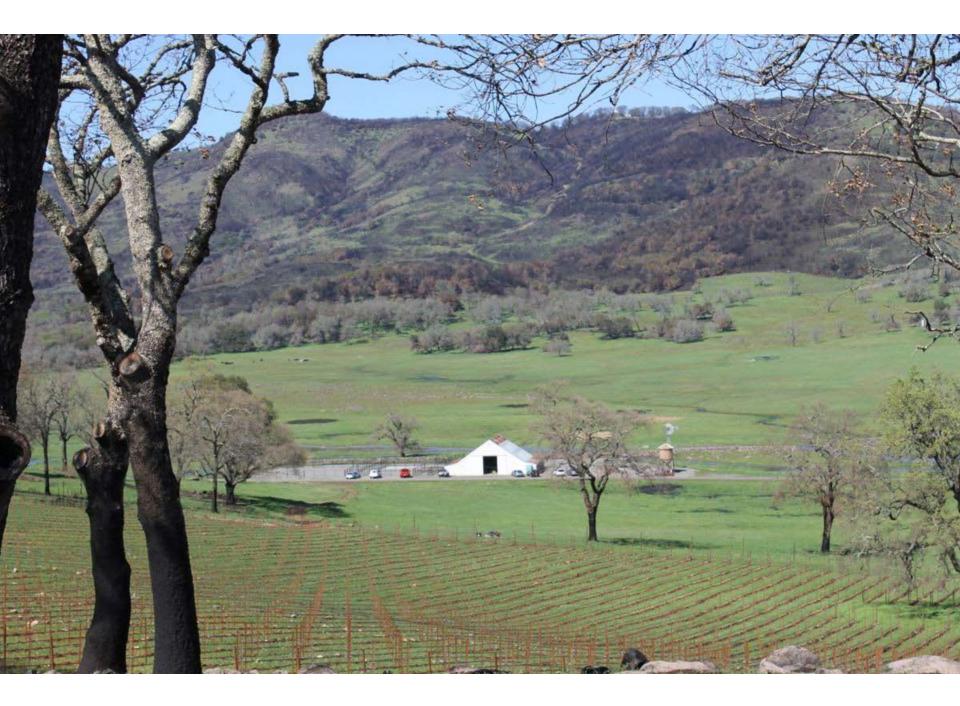


Copyright © 1996 by Udo Radlhammer



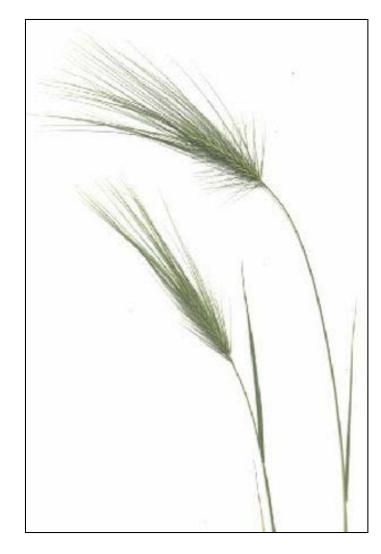
Native plant species were predominantly perennial bunch grasses and annual forbs.

Forage species introduced by the Spanish.



Reality of Exotic Annuals

- Here to stay
- Exotic annuals are better adapted to grazing.
 - Forage quality
 - Frequency of grazing
 - Intensity of grazing
 - Productivity
- We cannot go back to a "natural" state.
- Manage for objectives with disturbance



What about weed control?

Taeniatherum caput-medusae - medusahead

Aegilops triuncialis- barbed goatgrass

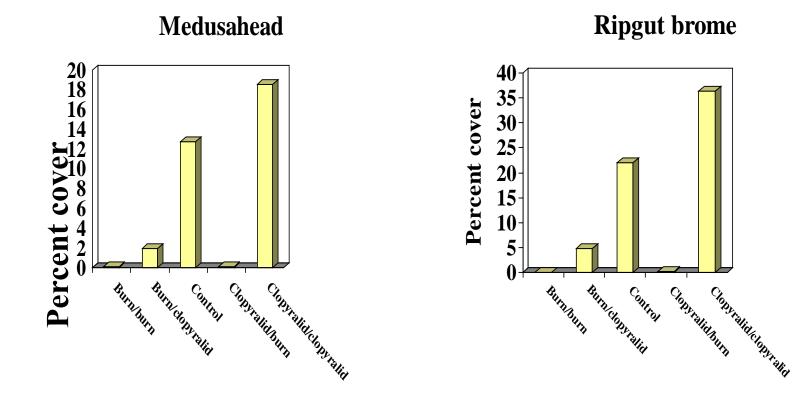
Centaurea solstitialis - yellow star-thistle

Summer medusahead cover at plots in Fresno and Yolo cos. after first year treatments

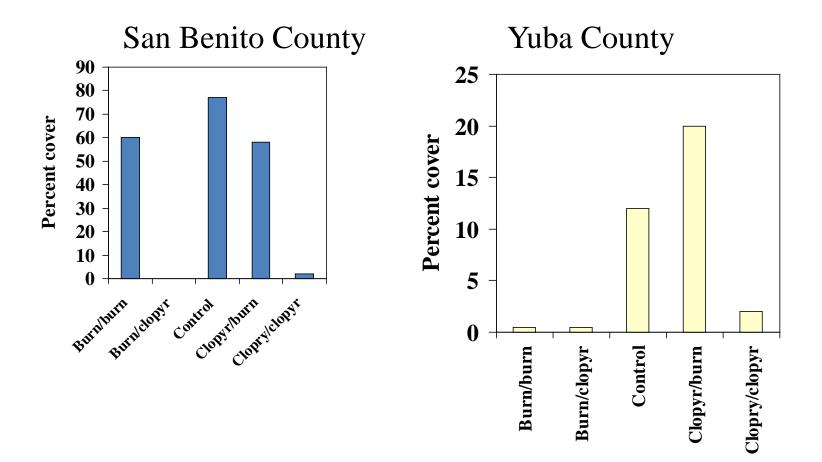
Platozu (imazanic)

Plateau (imazapic)		
County	Lbs/A	
	Fresno Co.	Yolo Co.
Untreated check	50 a	79 a
Reveg only	26 b	67 ab
Burn only	1 c	11 c
Treated 1 oz ae/A	3 c	74 a
Treated 3 oz ae/A	4 c	45 b
Treated 1 oz ae/A + reveg	2 c	79 a
Treated 3 oz $ae/A + reveg$	1 c	58 ab
Burned, treated 1 oz ae/A	0 c	2 c
Burned, treated 3 oz ae/A	0 c	0 c
Burned, treated 1 oz ae/A + reveg	0 c	6 c

0 c


0 c

Burned, treated 3 oz ae/A + reveg


Spring broadleaf forb cover at plots in Fresno and Yolo cos. after first year treatments

Plateau	(imazapic)
---------	------------

County	Percent cover of all broadleaf forbs	
	Fresno Co.	Yolo Co.
Untreated check	26 c	35 cd
Reveg only	78 ab	22 d
Burn only	102 a	111 a
Treated 1 oz ae/A	40 c	71 b
Treated 3 oz ae/A	28 c	73 b
Treated 1 oz ae/A + reveg	45 bc	65 bc
Treated 3 oz $ae/A + reveg$	59 abc	65 bc
Burned, treated 1 oz ae/A	60 abc	100 ab
Burned, treated 3 oz ae/A	40 c	74 a
Burned, treated 1 oz ae/A + reveg	41 bc	113 a
Burned, treated 3 oz ae/A + reveg	56 bc	80 ab

Yellow starthistle cover following two years of control

What about emissions?

@AGU PUBLICATIONS

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

6JD026315 Comparison with prescribed burning and air

Special Section:

Quantifying the Emission, Properties, and Diverse Impacts of Wildfire Smoke

Key Points:

 Emission factors (EF3) were measured for three western wildfires for major gases and particles and oraniy measured DVOCs and organic nitrates Aircraff-measured EF(PM), from wildfires is more than 2 times that of prescribed fires
 Emission estimates for western U.S. wildfires indicate a significant BB contribution to aerosol mass

Supporting Information: • Supporting Information S1

Correspondence to: L. G. Huey, greg.huey@eas.gatech.edu

Citation:

Liu, X., et al. (2017), Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications, J. Geophys. Res. Atmos. (22, 6108–6129, doi:10.1002/2016/D026315.

Received 6 DEC 2016 Accepted 20 APR 2017 Published online 14 JUN 2017

 quality implications

 Xiaoxi Liu^{1,2,3} (a), L. Gregory Huey¹ (b), Robert J. Yokelson⁴ (c), Vanessa Selimovic⁴, Isobel J. Simpson⁵,

 Markus Müller^{4,4} (c), Jose L. Jimenez^{2,4} (c), Pedro Campuzano-Jost^{2,4} (c), Andreas J. Beyersdorf^{2,10} (c),

 Donald R. Blake⁵, Zachary Butterfield^{11,12}, Yonghoon Choi^{9,13} (c), John D. Crounse¹⁴ (d),

 Douglas A. Day^{2,4} (c), Glenn S. Diskin⁹ (c), Manvendra K. Dubey¹¹, Edward Fortner¹⁵,

 Thomas F. Hanisco¹⁴ (c), Weiwei Hu^{2,4}, Laura E. King¹ (c), Lawrence Kleinman¹², Simone Meinardi⁵ (c),

 Tomas Mikoviny¹⁸ (c), Timothy B. Onasch¹⁵ (c), Brett B. Palm^{7,4} (c), Jedlack^{17,19} (c),

 Iana B. Pollack^{7,192,40} (c), Thomas B. Ryerson¹⁹ (c), Glen W. Sachse⁹, Arthur J. Sedlacek¹⁷,

John E. Shilling²¹ , Stephen Springston¹⁷, Jason M. St. Clair^{14,22,23}, David J. Tanner¹,

Airborne measurements of western U.S. wildfire emissions:

Alexander P. Teng¹⁴, Paul O. Wennberg^{14,24}, Armin Wisthaler^{6,18}, and Glenn M. Wolfe^{16,25} ¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA, ²Now at Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA, ³Now at Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, USA, ⁴Department of Chemistry, University of Montana, Missoula, Montana, USA, ⁵Department of Chemistry, University of California, Irvine, California, USA, ⁹Institute for Ion Physics and Applied Physics. University of Innsbruck, Innsbruck, Austria, ⁷Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA, ⁸Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, USA, ⁹NASA Langley Research Center, Hampton, Virginia, USA, ¹⁹Now at Department of Chemistry, California State University, San Bernardino, California, USA, 11 Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 12Now at Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA, ¹³Science Systems and Applications, Inc., Hampton, Virginia, USA, ¹⁴Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 15 Center for Aerosol and Cloud Chemistry, Aerodyne Research Inc., Billerica, Massachusetts, USA, ¹⁶Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 17 Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA, ¹⁸Department of Chemistry, University of Oslo, Oslo, Norway, ¹⁹Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA, 20 Now at Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA, ²¹Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA, ²²Now at Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, ²³Now at Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland, USA, ²⁴Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA, 25 Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland, USA

Abstract Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC⁴RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM₁) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total nonmethane organic compounds, and PM1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM₁ emission estimate (1530 ± 570 Gg yr⁻¹) is over 3 times that of the NEI PM_{2.5} estimate and is also higher than the PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from biomass burning in the western states is significantly underestimated. In addition, our results indicate that prescribed burning may be an effective method to reduce fine particle emissions.

©2017. American Geophysical Union. All Rights Reserved.

LIU ET AL.

Conclusions

- Our "natural" landscapes require disturbance
- Focus on the goals of the landscape
- Fire is one vegetation management tools
- Properly timed fire can control noxious weeds
- Prescribed burns vs. wildland fires

Questions

Morgan Doran mpdoran@ucanr.edu

