Reducing the Vulnerability of the Built Environment

by

Steve Quarles UCCE Advisor, Durability of Wood-frame Buildings 1301 S. 46th St., Bldg. 478 Richmond Field Station, Richmond, CA 94804 steve.quarles@berkeley.edu

Buildings in wildfire prone areas must be protected from:

✓ Embers (also called 'firebrands'; lofted

vegetation or construction materials that are burning)

 ✓ Flame impingement (near-by vegetation or debris, construction material, fire wood or other woody debris)

✓ Radiant Heat (dense vegetation, an adjacent building/deck fire

Retrofit ...

"Harden" the home:

- Materials
- Vegetation Management
 Design

University of California Agriculture and Natural Resources Making a Difference

for California

Five firebox / ember generators

5 ducts at upper level

5 ducts at mid-level

2 ducts at low level (end units)

3 ducts at floor level (center units)

Test Building

14

DIXON

LET DE

BERDIN

BRADIM

PLY DA

DIXIN

LE LOUA

LIN

brank

IBHS Research Center

\checkmark 105 nearly 6 ft diameter fans

 \checkmark 145 ft W x 145 ft L x 70 ft H test chamber

 \checkmark 60 ft W x 30 ft H wind inlet

THE ROOF

Fire rating for roof coverings

Burning [12"x 12"] 'A Brand' placed on roof covering.

Flame penetrated through to the underside of the roof sheathing, into what would be the attic.

University of California Agriculture and Natural Resources

> Making a Difference for California

IBHS Research Center, South Carolina

THE EAVE

University of California Agriculture and Natural Resources Making a Difference for California

Vents

- Soffited eave
- Open eave Gable end

Truss bays, soffited eave - *no* angle flashing at roof edge

Accumulation of embers / firebrands

Truss bay, soffited eave angle flashing at roof edge

Minimal accumulation of embers / firebrands

Gable End Vent

IBHS Research Center, South Carolina

Demonstration

IBHS Research Center, South Carolina

WINDOWS

Embers collecting on fiberglass screen

Water-cooled radiator panel Heat flux sensors behind window **Radiant Panel**

Screen study, vinyl windows, dual pane annealed glass

Screen – ✓ Fiberglass (plastic clad) ✓ Metal

Radiant Exposure: 35 kW/m²

Where screen intact, protects against ember entry

Screen failure after flame contact

100% cotton curtain behind dual pane annealed glass, vinyl window

Ignition of curtain occurred after both panes of glass in upper light failed

DECKS & DECKING

8.28

Looking down the slope

University of California Agriculture and Natural Resources

> Making a Difference for California

Long term performance of joist and wood and joist hanger? Water staining on bottom of (wood plastic composite) deck boards

> University of California Agriculture and Natural Resources

> > Making a Difference for California

Performance related to decking

WPC, not 7A compliant

'7A' compliant

NO ARKINI FIRE LANE

University of California Agriculture and Natural Resources

> Making a Difference for California

REDWOOD

Penetration into stud cavity

1

for California

Thanks for your attention!

Steve Quarles steve.quarles@berkeley.edu (510) 665-3580

http://firecenter.berkeley.edu

http://www.eXtension.org/surving_wildfire

http://cecontracosta.ucdavis.edu/Wood_Durability/Wildland_Urban_ Interface_Topics.htm

