

Presentation goals

- Present a process for determining post fire management strategy
- Discuss post fire land management practices and their pros and cons
- Show examples of post high severity fire treatments and regrowth

Post-fire assessment process

- 1) First, survey property to identify issues:
 - What is the severity of fire impacts?
 - What values are at risk?
 - Access? integrity of the road system
 - Vegetation? Regrowth? Exotic weeds
 - Soil productivity/water quality? erosion risk
- 2) Define your goals
 - Research treatment options and costs
 - Refine your goals
- 3) Contact a professional / Or DIY if small
 - Develop a plan

Fire impacts depend on fire severity

Map Vegetation Burn Severity

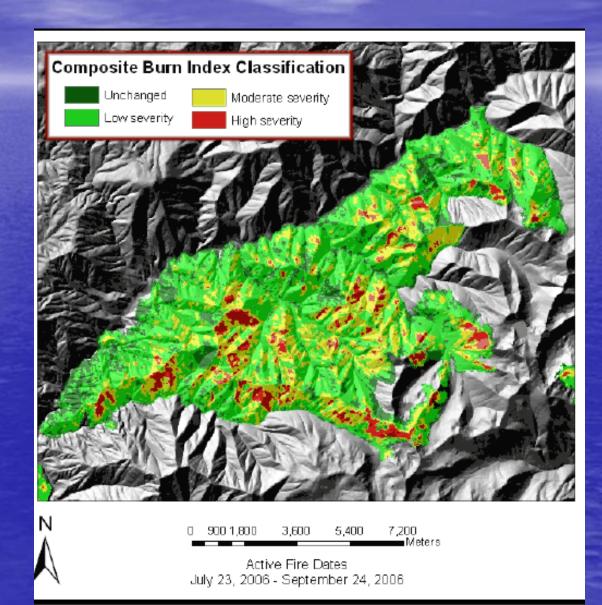
 Low – doesn't burn the canopy, most needles remain on tree, some scorching, ground still has some litter cover

Moderate – burns into canopy and burns needles from some but not all trees, consume part of ground cover, largest most vigorous trees survive

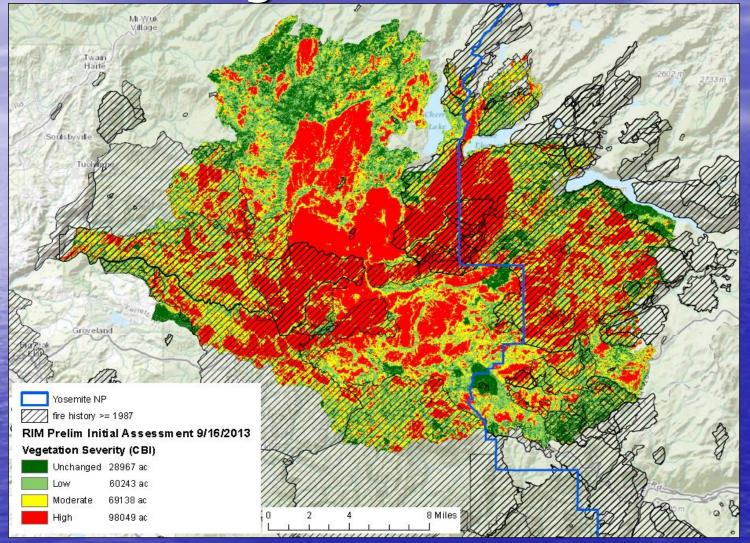
 High - Most trees killed, most foliage and litter consumed

Increase in area burned at high severity

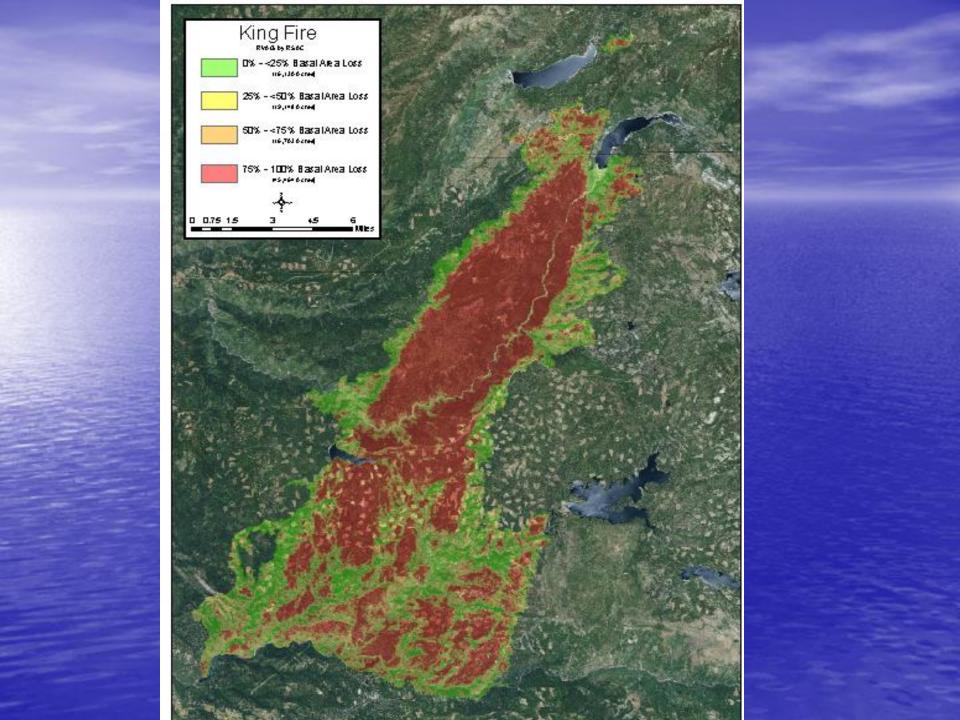
- Due to changes in forest structure due to fire suppression and climate change
- Area burned at high severity increased from 17% to 30%
- High severity patches doubled from 1984 to 2006


Year	10 year average percent high severity	Mean patch size of high severity fire	Mean max
1984	17%	6.9 acres	124 acres
2006	30%	13.0 acres	292 acres

Forest structure has changed


- Recent estimates of Californian prehistoric fire area
 - between 4.4 and 11.9 million acres/ year or
 - -5% 12% of the states lands burned annually
- The trees of all of the species stand more or less apart in groves, or in small irregular groups, enabling one to find a way nearly everywhere, along sunny colonnades and through openings that have a smooth, parklike surface". John Muir 1894

Increase in high severity fires


- Fires are now more likely to be of high severity meaning that most or all trees are killed
- Still a lot of variety in severity
 - Hancock fire 2006

Rim Fire Vegetation Burn Severity

High = 38%, Mod. = 27%, Low = 23%, None = 11%, 63,000 acre patch of high severity fire

1) First, survey your property to identify issues:

- What is the severity of fire impacts?
- What values are at risk?

Low Severity Fire - most trees survive

- Erosion risk Low
 - Leaves/needles not consumed ground will have some litter cover
- Tree removal/replanting low
 - Most trees survive, plenty of seed source for next generation
- Road risk Low
 - Most vegetation survives therefore no extra water to accommodate
- Weeds Low
 - In areas where cover is gone or suppression equipment used

Moderate Severity - burns needles from some trees, some cover, biggest trees survive

- Erosion risk Moderate
 - In areas without ground cover
- Tree removal/replanting low
 - May want to remove dead trees in some areas, plenty of seed source for next generation of conifers, oaks may resprout
- Road risk Low
 - Some vegetation killed leading to some extra water to accommodate
- Weeds Moderate
 - In areas where cover is gone or suppression equipment used

High Severity - Most trees killed, most foliage and litter consumed

- Erosion risk Highest
 - No ground cover for several seasons until shrub and herbaceous plant regrowth, highest on slopes
- Tree removal/replanting Highest if conifer
 - Remove dead trees for safety and fuels, plant if no tree conifer seeds source nearby, tend oak resprouts
- Road risk Highest
 - All the water that used to be used by trees goes into ground, ditches and streams
- Weeds Highest
 - Most area bare and susceptible to weeds

Is a plant still alive? Will vegetation come back after a fire?

- YES Riparian plants
 - Have a lot of water and recover first
 - Within week to same season

- YES Herbaceous plants and shrubs
 - May resprout or seeds may be in the seed bank
 - Cover starts to get established first season after, complete within about four seasons

Angora Riparian Regrowth

September 2007

September 2008

November 2007

December 2008

May 2008

July 2009

2007 Angora fire in South Lake Tahoe

2007 2009

 Shrub regrowth substantial within two years, seven years later there are seas of brush 6' tall

Will the trees recover after fire?

MAYBE Oaks

- Leaves will come back in spring or may resprout from stump if cambium is dead (more likely for live oaks, small diameter trees in moister areas)
- Next season for leaves, sprouts, up to 3 growing seasons to determine if crown will recover

NO Conifers

- Not if most needles are brown or gone. They are not able to put on new needles or resprout
- Depends on distance from seed source, brush phase: 30 to 100 years

Sand fire burned areas complex

Process

- 1) First, survey your property to identify issues map the resources at risk and problem areas
- 2) Define your goals
 - Research treatment options and costs
 - Refine your goals
- 3) Contact a professional / Or DIY if small
 - Develop a plan

Erosion control

 Objective: Protect water quality and site productivity (most important 1st/2nd winter)

Practice	Pros	Cons
Mulching with straw/ wood chip	Effective at 60% ground cover	Expense: \$250-\$930/acre (helimulch), \$500-\$1200/acre hand
Contour felling	Effective if done correctly	Expense: \$420-\$1,200/ acre requires expertise
Straw/fiber wattles/rolls	Moderately effective with large rainfall events	Expense: \$1,100-\$4,000/ acre requires expertise
Silt fence	Effective when properly installed, must be cleaned out to maintain	\$50/role + labor = @ \$200/fence
Seeding	Often not effective	\$20-\$170/acre
Water bars	Effective if done correctly	Requires heavy equipment

Remove dead trees

 Produce wood products/ Recover costs/ Reduce future fuels/Improve safety

Practice	Pros	Cons	
Mechanical harvesting	Can offset treatment costs	Will require paperwork	
methods/ larger projects	Effective when done quickly	When delayed value drops and can interfere with regeneration	
	Removes largest fuels		
	Removes danger to planters	May create smaller fuels	
	/firefighters /structures	Reduces snag habitat	
		Potential for road construction /soil impacts	
Hand felling/DIY	Flexible timing, do it yourself	Typically not marketing the materials	

Oaks not a commercial species

Doable for small areas

backyard

Time to tree decay

Years after tree death	White fir	Ponderosa/ Jeffrey pine	Sugar pine	Douglas-fir
1	10-20% volume decayed	25% of sapwood bluestained	Extensive bluestain in sapwood	Minimal decay, some cracks in heartwood
2	50% volume decayed	All wood bluestained, 50% of sapwood decayed	75% sapwood decayed	25-50% sapwood decayed
3	100% volume decayed	All sapwood and some heartwood decayed	All sapwood and some heartwood decayed	All sapwood and 1" heartwood decayed
4		70% of volume decayed	50% volume decayed	2" heartwood decayed
5		90% volume decayed	50% volume decayed	3" heartwood decayed

Replant trees

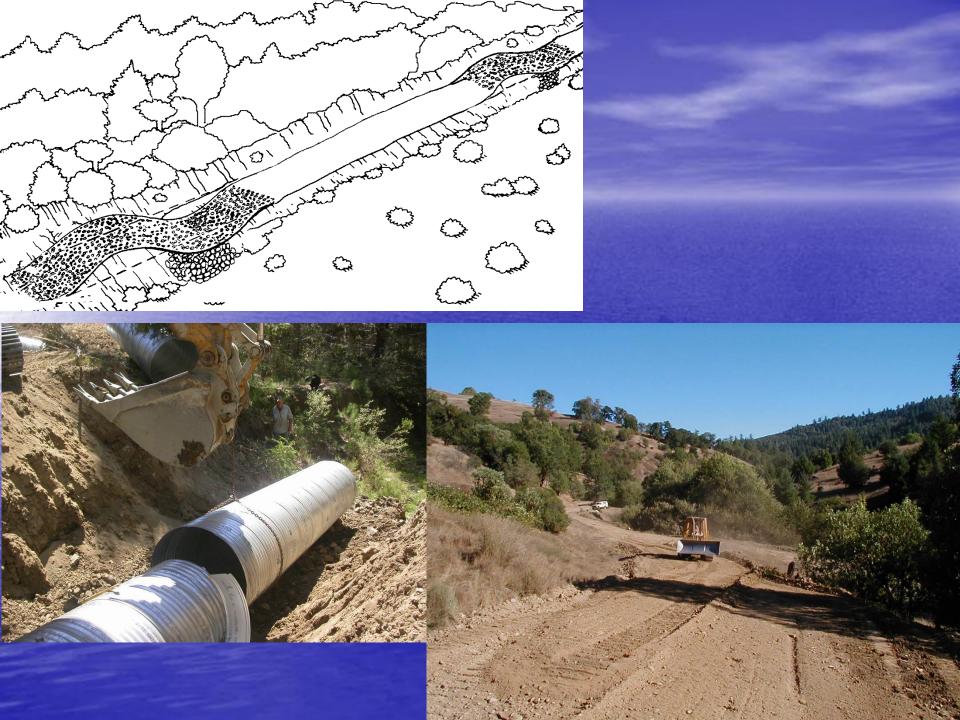
Objective: Accelerate growth of forest /woodland

Method	Pros	Cons		
Bare root and container planting	Establishes conifers more quickly (30-50 years) Restores carbon sequestration potential Control species and genotype of future forest	Expense: \$500-\$1,000/acre Reduces future shrub habitat Requires on-going maintenance Past performance may not be a predictor of future success		
Acorp	Incorporative can be gathered locally	Damage from animals may be		

Acorn
planting in fall

Inexpensive, can be gathered locally
planting in Germination can be high if done right

Can establish deep roots right in the ground


Damage from animals may be high - may require tree shelters, fencing

Road system upgrades

Maintain road system / Protect water quality

Methods	Pros	Cons
Maintain/ clean culverts	Effective, only needs to be done a few winters	Requires time and vigilance Must be onsite
Upgrade road/Outslope with rolling dipsArmor with rockInstall larger culverts	Effective with long lasting benefits	Expensive Requires technical expertise/ heavy equipment Expensive Expensive

Vegetation control

 Control non-natives / Reduce competition to conifers

Methods	Pros	Cons
Herbicide	Mixed results	Expense: Requires licensed applicator
Herbicide/ hand grubbing	Effective	Hand grubbing very labor intensive – not for large areas

3) Contact a professional / Or DIY if small

- Natural Resources Conservation Service for technical assistance
- Registered Professional Forester for Timber Harvest
- Licensed Timber Operator
- Certified Arborists
- Licensed Pesticide Control Advisor
- Master Gardeners

Thank you!

Susie Kocher,
UC Cooperative
Extension
sdkocher@ucanr.edu

