Assessing the Accuracy and Precision of Soil Chemical Analyses Performed by Eight Agricultural Laboratories

Andre Biscaro,

Irrigation and Water Resources Advisor University of California Cooperative Extension, Ventura County

Acknowledgments:

• <u>Co-PI</u>:

Robert Miller, ALP Program Director, former Extension Soil Specialist, UC-Davis

• <u>Project Cooperators</u>:

Steve Orloff, UCCE Advisor (*in memoriam*)
Dirk Holstege, UC Davis Analytical Lab (retired)
Tim Hartz, UC Davis (retired)
Anthony Luna, SRA, UCCE Ventura
Eryn Wingate, Tri-Tech Ag Camarillo

Presentation Outline

- Context of soil chemical analyses
- Material and methods
- Results
- Summary

Context of Soil Chemical Analyses

- An accurate soil chemical analysis is the cornerstone of an efficient nutrient management program
- Without a reliable soil test result, significant mistakes in fertilization programs can occur, resulting in under or over fertilizer recommendations
- This can dramatically affect profitability and can potentially have negative environmental consequences

Context of Soil Chemical Analysis

- Skewed soil analyses can also bias the data and findings of soil fertility and nutrient management research
- In some cases, dozens or hundreds of soil samples are collected from a single site and submitted to a laboratory for fertility assessment
- Deciding which laboratory to send a sample to can be a daunting task

Context of Soil Chemical Analysis

- Unfortunately, there are no public data reporting the accuracy of the analysis performed by agricultural laboratories, and there isn't a true certification program in the United States
- Current proficiency programs, the Agriculture Laboratory Proficiency (ALP) and the North American Proficiency Testing (NAPT) are not mandatory, and they do not guarantee quality control
- Lab users deserve to be able to assess the quality of a laboratory before committing and trusting in its results

Objectives

- Assess the accuracy and precision of soil chemical analysis performed by the eight agricultural laboratories
- ✓ Provide lab users with science-based information of the quality and reliability of agricultural laboratories

Material and Methods

3 times (December 2018, April and June 2019)

8 Laboratories

- Soil A: SRS-1809
- Soil B: SRS-1714
- Soil C: SRS-1604
- Soil D: SRS-1610

https://collaborative-testing.com

Basic soil fertility:

NO₃-N, P, X-K, X-Na, X-Ca, X-Mg, SO₄-S, CEC estimated, ECe, pH, SPE Cl, Ca, Mg, Na and B, DTPA Zn, Fe, Mn, Cu

Material and Methods

- Reference soil samples are soils collected by the ALP and analyzed by at least 30 credible laboratories over 90 times total for each sample
- Each of these samples has a nutrient content value determined by the median of those 90+ analyses, and they were used as the reference of nutrient content value

Accuracy vs. Precision

<u>Accuracy</u>: how close the analyses were from the accepted value (ALP's median)

<u>Precision</u>: how variable the analyses of the same soil were across time

Precision

Results

Exchangeable K (ppm), Soil A

University of California Agriculture and Natural Resources

Median Absolute Deviation: $MAD = Median(|X_i - X|)$

Exchangeable K (ppm), Soil C

Olsen P (ppm), Soil A

pH, Saturated Paste, Soil C

Inconsistencies between lab results and reference soils

Soil analyses chosen for the accuracy and precision scores:

✓ Olsen P √ Х-К ✓ X-Ca ✓ X-Mg ✓ ECe ✓ pH ✓ SAR ✓ DTPA Zn

Data Analysis

Accuracy Method:

Failure: > ALP's median + (2.9*MAD) < ALP's median - (2.9*MAD)

Median Absolute Deviation: MAD = Median $(|X_i - \tilde{X}|)$

 The overall precision score was calculated as a proportion of unflagged analyses to the total number of analyses

Data Analysis

<u>Precision Method</u>: ratio of the standard deviation to the mean for each analysis and soil across the three rounds.

Relative Standard Deviation: RSD% = (SD/Mean)*100

- Non-acceptable analyses were 'flagged' as outliers based on ALP's standards
- The overall precision score was calculated as a proportion of unflagged analyses to the total number of analyses

Deculto	Analysis	Soil ID	Media	a MAE) ±95% CL	1st		2nd		3rd		RSD %	6
Results	Olson P	SPS 1604	12.5	1.6	47	13.0		13.0		15.0		0	
	Olacii I	SRS-1610	26.2	3.7	10.8	34.0		32.0		35.0		5	
		SRS-1714	24.0	4.0	11.7	33.0		33.0		37.0	• • 1	7	
		SRS-1809	10.2	1.1	3.2	12.0		14.0	* H 1	15.0	- H 1	11	P
		0110 2000	1012		0.2	12.0		14.0		10.0			
Example: Lab #1	х-к	SRS-1604	160	7.9	23	144		147		156		4	
		SRS-1610	95	11	31	100		118		123		11	P
		SRS-1714	489	75	219	438		446		461		3	
		SRS-1809	199	15	44	153	• L 1	167		179		8	
	X-Ca	SRS-1604	6.8	0.40	1.2	6.0		6.2		6.7		6	
		SRS-1610	3.4	0.30	0.9	3.4		3.6		3.9		7	
		SRS-1714	9.0	0.60	1.8	8.4		8.2		8.7		3	
		SRS-1809	8.7	0.70	2.0	6.8		8.2		8.6		12	P
	X-Mg	SRS-1604	2.5	0.14	0.4	2.2		2.6		2.7		9	
		SRS-1610	0.7	0.07	0.2	0.7		0.8		0.8		7	
		SRS-1714	2.4	0.16	0.5	2.2		2.3		2.3		4	
		SRS-1809	1.4	0.07	0.2	1.1	• L 1	1.3		1.4		12	P
	SPE - pH	SRS-1604	5.40	0.1	0.26	5.5		5.5		5.4		1	
		SRS-1610	5.94	0.1	0.26	6.0		5.9		5.9		1	
		SRS-1714	6.79	0.1	0.38	7.2	* H 1	6.9		7		2	
		SRS-1809	7.41	0.1	0.35	8.0	• H 1	7.8	• H 1	7.6		3	P
	ECe	SRS-1604	1.95	0.1	0.41	0.9	• L 1	1.8		2.6	• H 1	48	P
		SRS-1610	1.99	0.2	0.61	2.0		2.3		1.8		12	
		SRS-1714	2.32	0.1	0.18	0.8	• L 1	2.8	* H 1	2.3		53	Р
		SRS-1809	1.79	0.1	0.35	0.5	• 🖬 1	1.3	• L 1	1.5		48	Р
	SAR	SRS-1604	0.20	0.02	0.06	0.24		0.29	• H 1	0.28	• H 1	9	
		SRS-1610	0.27	0.03	0.08	0.25		0.34		0.29		14	
		SRS-1714	0.22	0.02	0.06	0.24		0.29	* H 1	0.29	• H 1	10	
		SRS-1809	1.45	0.07	0.19	1.30		1.35		1.39		3	
	Zn (DTPA)	SRS-1604	0.90	0.1	0.26	1.4	• H 1	0.8		1.3	• H 1	28	Р
		SRS-1610	1.01	0.2	0.44	1.7	• H 1	1.4		1.6	• H 1	10	
		SRS-1714	11.2	1.4	4.1	13.3		11.8		13.5		7	
University of Calif		SRS-1809	0.87	###	0.26	1.10		1.00		1.10		5	
		Score average per submissio			71.9		81.3	78.1					
Agriculture and Natural									Overal	Proncienc	sy score	70	11.1
									Overal	I Precision	Score %		71.9

Overall Accuracy and Precision Scores

*Only participated in rounds 1 and 2

Summary

- ✓ Although all labs presented certain inaccuracy and imprecision, some stood out
- ✓ Laboratories 2 and 8 were consistently inaccurate and imprecise throughout the analyses and soils
- ✓ Laboratories 1 and 7 were the most accurate and precise
- ✓ Laboratories 3, 4, 5 and 6 presented fluctuating accuracy and precision

Other observations

- ✓ Main challenge of the industry is consistency: methods of analyses, reporting of the methods, reporting units, and of the interpretation of the results;
- ✓ Lab users could advocate for lab's adhesion to a proficiency program where there is a standard for expected performance.

Poll questions

Thank you!

Robert Miller <u>rmiller@soiltesting.us</u> (970)217-2572 Andre Biscaro asbiscaro@ucanr.edu (805)645-1465