Paul Vossen

Background:

- UC Extension 36 years
 - Founded first certified tasting panel
 - Leading expert in quality olive oil
 - Founder of the UCD Olive Center
 - Research on Olive Cultivation & Processing
 - Taught Production, Processing, & Sensory Evaluation
- Founder of California Olive Oil Council
- World Consulting "Paul Vossen Ag Consulting"
- Source Olive Oils for MillPress Imports
- Olive Oil Judge

Retired after 36 years (6-2016)

<u>www.paulvossen.com</u> paulmvossen@gmail.com

Intro to Olive Oil Production

- World Situation (California is Tiny)
- Production Costs
- Establish and Orchard
- Producing Oil
- The Market
- Challenges & Opportunities

USA imports ~ 97.0% of consumption

6,000 years

How important is Olive Oil?

World Production 3 million tons (EU= 75% - Other 24%) USA ~ 1%

WORLD OLIVE ACREAGE

- Spain ~ 6 million 25%
- Tunisia ~ 3.8 million 16%
- Italy ~ 3.5 million 15%
- Greece 2.5 million 11%
- Portugal 1.3 million 6%
- Turkey 1.2 million 5%
- Morocco 1.1 million 5%
- Syria 1.0 million 5%
- Algeria, Jordan, Iran, Egypt, Lebanon, Israel, France, Palestine 11%

- Argentina 200,000 0.85%
- Australia ~ 80,000 0.33%
- Chile ~ 50,000 *0.22%*
- USA ~ 22,000 table 0.09%
 ~ 30,000 oil 0.125%
- World ~ 24 million

Spain – 6 million acres

Andalucía Spain

Traditionally Spaced Trees

High-Density System

Italy = 3.5 million acres

Greece – 2.5 million acres

North Africa & Middle East 9.6 million acres

Super-High-Density in California

Arbequina market prices \$16-\$26/gallon

SUPER-HIGH DENSITY PRODUCTION

5 x 13 = 670 trees/ acre 4 x 12 = 907 trees/acre

•Arbequina – Arbosana – Koroneiki

Over-the-row harvest

Wine grape Harvesters 6x10 ft.

Costs to Establish and Produce Olives for Bulk Oil Super-high-density (SHD) orchard • Sacramento Valley, - \$5,000-\$10,000/acre

- Over-the-row mechanical harvest \$50/ton)
- Arbequina, Arbosana, or Koroneiki varieties
- 5' X 13' spacing, 670 trees per acre
- 80 contiguous acres
- Drip irrigation
- Growers paid by gallons produced \$15-\$26

Lower Cost Production in Europe, South America, & Australia

Learning by Tasting

Taste Oil # 1 →

UC Cooperative Extension 10-point Olive Oil Profile

1. Aroma intensity	0	1	2	3	4	5	6	7	8	9	10
2. Bitterness	0	1	2	3	4	5	6	7	8	9	10
3. Pungency	0	1	2	3	4	5	6	7	8	9	10
4. Fruit intensity	0	1	2	3	4	5	6	7	8	9	10
5. Total flavor intensity	0	1	2	3	4	5	6	7	8	9	10
6. Sweetness	0	1	2	3	4	5	6	7	8	9	10
7. Astringency	0	1	2	3	4	5	6	7	8	9	10
8. Texture: thin to thick	0	1	2	3	4	5	6	7	8	9	10
9. Greasiness	0	1	2	3	4	5	6	7	8	9	10
10. Defects											
rancid	•										
fusty, muddy sediment	•										
musty	•										
winey	•—										
frozen	•										
other	•										•

Taster: Date: Sample:

specify: _____

÷

Point by Point

- 1. Aroma Intensity: Positive or Negative (#)
- 2. **Bitterness:** Dull sensation back of tongue
- 3. **Pungency:** Harsh sensation throat
- 4. Fruit Intensity: Fruity green or ripe
- 5. Total Flavor: Overall B-P-F
- 6. <u>Ripe Characteristics:</u> tropical, berry, apple, etc.
- 7. Green Characteristics: Herbal, spicy, etc.
- 8. <u>Complexity:</u> Number of different flavors
- 9. **Balance:** Harmony of Fruity Bitter Pungent

10. Freshness: Zing, crispness, flat, tiredness

Aroma - Smell (nose test) (ID some of the complex flavors)

Olfactory – Smell-Aroma

Bitterness (harsh, dull-stinging)

Fungiform papillae SWEET Filiform papillae SOUR Foliate papillae BITTER Vallate papillae Glossopharyngeal

HUMAN TONGUE

Pungency (burning, coughing, hot chili pepper, irritation)

Fruitiness (Ripe Fruit) *apple, berry, tropical, peach, etc.*

Fruitiness (Green) herb, grass, tomato leaf, mint, tea, eucalyptus, nettle, cinnamon, spice, etc.

Overall Evaluation:

• Complexity

- Balance
- Freshness
- Overall Quality

Small-Scale Gourmet Production

Costs to Establish and Produce Gourmet Bottled Oil

Medium Density (MD) orchard

- Coastal California 2011 \$22,000/acre
- Hand assisted harvest \$500/ton
- Any varieties
- 18' X 9' spacing, 269 trees per acre
- 15 contiguous acres 10 in trees
- Drip irrigation
- 40 year orchard life

MD Coastal Expected yields and prices (375 ml bottles)

- Marketable production in the 4th year
 - -4^{th} year -1.00 t = 403 bottles
 - -5^{th} year -1.25 t = 504 bottles
 - -6^{th} year -1.50 t = 605 bottles
 - -7^{th} year -2.00 t = 807 bottles
 - 8th year 2.50 t = 1,008 bottles
 - -9^{th} year -3.00 t = 1,211 bottles
- Expected yield range: 100 120 gallons/acre
- Expected price range: \$100 \$300/gallon

Break Even Yield and Cost/bottle (375ml)

	Yield Tons/Acre							
	1	2	3	4	5	6	7	
	Yield (375ml Bottles/Acre)							
	403	807	1,211	1,614	2,015	2,418	2,821	
OPERATING COSTS/ACRE:								
Cultural Cost	1,280	1,280	1,280	1,280	1,280	1,280	1,280	
Harvest (Pick, Haul, Process, Bottle, Market)	2,743	5,493	8,243	10,986	13,716	16,459	19,202	
Interest on operating capital @ 5.75%	38	52	65	78	91	104	117	
TOTAL OPERATING COSTS/ACRE	4,061	6,825	9,588	12,344	15,087	17,843	20,599	
TOTAL OPERATING COSTS/Bottle	10.08	8.46	7.92	7.65	7.49	7.38	7.30	
CASH OVERHEAD COSTS/ACRE	727	727	727	727	727	727	727	
TOTAL CASH COSTS/ACRE	4,788	7,552	10,315	13,071	15,814	18,570	21,326	
TOTAL CASH COSTS/Bottle	11.88	9.36	8.52	8.10	7.85	7.68	7.56	
NON-CASH OVERHEAD COSTS/ACRE	2,394	2,394	2,394	2,394	2,394	2,394	2,394	
TOTAL COSTS/ACRE	7,182	9,946	12,709	15,465	18,208	20,964	23,720	
TOTAL COSTS/Bottle	17.82	12.33	10.49	9.58	9.04	8.67	8.41	

Costs of Production/acre

Costs	Bulk	Gourmet		
Establish (1 st yr.)	\$5,000	\$14,849		
Cultural Costs	\$1,000	\$ 1,280		
Harvest & Haul Costs	\$ 328	\$ 1,605		
Overhead (tax, land, inst, bldg, equ	ip) \$1,433	\$ 3,121		
Process-Bottle-Market		<u>\$ 6,638</u>		
TOTAL COSTS	\$2,761	\$12,644		
Based on \$14/gallon S	HD and \$11	6/gallon MD		
External Cost Factors

- Labor
- Machinery
- Autos and tractors
- Fuel
- Ag chemicals
- Fertilizers Compost
- Seeds
- Water
- Electricity

- Property tax
- Insurance
- Office
- Management
- Capital Recovery Cost (annual depreciation and interest for capital investment)

Lots of Competition

Paul Vossen

Challenges - Opportunities

- Produce Super Premium Oil (not just EV)
- Keep Costs down
- Develop a Specialized Market
- Differentiate Your Oil from Bad Oils

- Huge Increasing Market
- Olive Oil is VERY Healthy
- Olive Oil Tastes Great
- Enhancement & Contrast with Food

Direct Market

Taste Oils # 2

Super Premium Olive Oil Prices

- \$15 to 30/bottle = \$30 to 60 per liter
- \$113 to \$227/gallon

Growing Olives

<u>Site</u> (climate, terrain, soil, water,)

Varieties (table & oil)

Systems (high & super density)

<u>Cultural Practices</u> (organic & conventional)

Give yourself every possible advantage

Site Evaluation (beyond climate)

Elevation – Slope - Soil

- **Above or Below ? ft.** = temperature problems
- Over 35% slope = equipment danger, more hand labor, erosion threat, and high cost
- **Poor drainage** clay soil, seepage, high rainfall, limited surface water movement, restrictive layers
- <u>Shallow soil</u> = less drainage & low water holding capacity
- Mineral toxicity = high Mg B Na etc.

Mediterranean Soils *Deep Gravely Limestone*

Young olive tree roots - sand

Well drained deep soil with little rainfall to prevent uncontrolled vigor

Low spots with poor drainage

Raised planting beds

Too cold

Damaging Climatic Conditions for Olives

- <u>Winter</u> young trees < 25°F
- <u>Winter</u> mature trees small branches < 22°F
- <u>Winter</u> mature trees killed ~ <15°F
- <u>Autumn</u> fruit before harvest < 29°F
- <u>Spring</u> rain, very high humidity, or hot dry wind at bloom

Lowest spot on valley floor is not the best

Soil Chemical Properties saturated paste extract

- Soil pH 5.0 8.5
- High Magnesium (< 1:1 ratio with Ca)
- High Calcium (> 8:1 ratio with Mg)
- Adequate Phosphorous (> 10 ppm P) = OK
- Adequate Potassium (> 125 ppm K) = OK
- High Boron (> 2 ppm B)
- High Chloride (> 10-15 meq/l Cl⁻)
- High Sodium (SAR > 15)

Spending a lot of money on exacting soil conditions is probably a waste for olives

HOW MUCH WATER IS NEEDED TO GROW OLIVES by CLIMATE?

Young Trees = 100% ET

 (500 mm cool - 1,000 mm hot)
 (20 to 40 in) = 540,000 - 1,086,160 gal/acre

Mature Oil Olives = 45-60% ET

(250 mm cool – 600 mm hot)
(10 to 30 in) = 272,000 – 814,000 gal/acre

EVAPOTRANSPIRATION (ET)

Temperature Relative Humidity Wind

Measuring ETo (reference)

Mathematical Formula: Temp. + RH + Wind

Direct measure from a free water surface

Water Gallons/tree/day

Water Use Based on Evapotranspiration for Carmel Valley - Laguna Seca - Salinas South Climatic Zones

GALLONS PER TREE PER DAY - OLIVES

Paul Vossen

												l		
		Jan	Feb	Mar	April	May	June	July	August	Sept	Oct	Nov	Dec	Total
ETo Carn	nel Valley Area	1.75	2.68	3.34	4.66	5.47	6.16	5.52	5.05	4.32	3.32	1.97	1.13	45.37
				 Olivo tra 	75%	of ETo Irofor	anco ovanot	ranchiratio	a) This is co	lod ETc (the	aliva coofici	ont		
				- Onve tre	es use 75%	oj Elo (rejer	ence evupor	runspirutio	inj. This is cu		onve coejici	entj		
27,154	gallons in an acre	of water 1 inch	deep	 Young o 	live trees sh	ould receive	100% of ETC	especially i	n March-Oc	tober when t	they grow th	e most		
43,560	square feet in an a	acre		 In wet w 	vinters - no i	rrigation is n	ecessary fro	m the first r	ainfall throu	igh spring				
0.6234	gallons per foot, 1	inch deep		 Start irr 	igations in tl	he spring wh	en the cove	crop/weed	ls start to go	dry				
				 Drip irri 	action shoul	d be applied	dailv or at l	east every-o	ther-day	-				
				 Mature 	trees (full si	re) should a	et about 509	of FTc since	e they don't	need to arou	wso much &	stress impr	oves floweri	na
				- There are	11223 (Juli 31	el snouiu ge	nch and 42	CO H2 /man	-0.6224 mm	1/1 ft2 based	an 1 inch of	stress impr	oves jiowen	iig
				 There all 	e: 27,154 g	illons/acre l	ncn ana 43,:	560 jt-/acre	= 0.6234 ga	/ 1 Jt- basea	on 1 inch of	water		
				 One acr 	e of solid cov	er refers to	a mature or	chard with 8	30% foliage (cover + cove	r crop			
				 MD = m 	edium densi	ty. Mature	trees 20x20	ft. @ 80 % ca	overage = 32	20 ft ²				
						-		1	-	-				
		la n	Tak	Max	Anatl	Maria	huma	tulu.	A	Cont	0	Maria	Dee	
	ETo inches/day	Jan	Peb 0.10	Mar 0.11	April 0.16	May 0.19	June 0.21	0.18	August	Sept.	0.11	0.07	Dec	
ETO, Inches/day		0.06	0.10	0.11	0.10	0.18	0.21	0.10	0.10	0.14	0.11	0.07	0.04	
	ETC, Inches/day	0.04	0.07	0.08	0.12	0.13	0.15	0.13	0.12	0.11	0.08	0.05	0.03	
Size of tre	ee Tree age	per tree/day	per tree/day	per tree/day	per tree/day	per tree/day	per tree/day	per tree/day	per tree/day	per tree/day	per tree/day	per tree/day	per tree/day	
4	ft ² new tree	0.2	0.4	04	0.6	07	0.8	07	0.6	0.5	04	0.2	01	
9	ft ² young tree	0.2	0.4	0.5	0.7	0.7	0.9	0.7	0.7	0.6	0.5	0.3	0.2	
25	ft ² young tree	0.7	1.1	1.3	1.8	2.1	2.4	2.1	1.9	1.7	1.3	0.8	0.4	
49	ft ² young tree	1.3	2.2	2.5	3.6	4.0	4.7	4.1	3.7	3.3	2.5	1.5	0.8	
81	ft ² young tree	2.1	3.6	4.1	5.9	6.7	7.8	6.7	6.2	5.5	4.1	2.5	0.7	i –
121	ft ² young tree	3.2	5.4	6.1	8.8	10.0	11.6	10.1	9.2	8.1	6.1	3.7	2.1	
169	ft ² young tree	4.5	7.6	8.5	12.3	13.9	16.2	14.1	12.9	11.4	8.5	5.2	2.9	i i
225	ft ² young tree	5.9	10.1	11.3	16.3	18.6	21.6	18.7	17.1	15.1	11.3	6.9	3.8	í
	mature MD													1
320	20 x 20 ft.	4.2	7.2	8.1	11.6	13.2	15.4	13.3	12.2	10.8	8.0	4.9	2.7	
			aallana	aallana	anllone	aallana	aallana	aallana	anllone	anllone		aallana	aallana	1
	d anno calld	gailons	galions	gailons	gallons	gallons	gailons	gallons	galions	gallons	galions	gallons	gailons	
	1 acresolid	per acre/day	per acre/day	per acre/day	per acre/day	per acre/day	per acre/day	per acre/day	per acre/day	per acre/day	per acre/day	per acre/day	per acre/day	
	cover													
43,560	ft ² gal/acre	1,150	1,949	2,194	3,163	3,594	4,182	3,626	3,318	2,933	2,181	1,337	742	
									-					

Irrigation Water Quality problems

- High Boron > 2 ppm
- Bicarbonate > 3.5 ppm
- Total Salt > 3 dS/m EC 480 ppm
- High Sodium > 3 meq/l 9 SAR
- High Chloride > 345 ppm

Olive Tree Nutrition ~ 40-80 lbs. N + some K

Leaf sampling for tissue analysis

Large mature mid shoot leaf in July

Paul Vossen

Element	Deficient	Sufficient	Toxic
Nitrogen	< 1.40	1.50 - 2.00	
Phosphorous	< 0.08	0.10 - 0.30	
Potassium	< 0.40	> 0.80	
Calcium	< 0.30	> 1.00	
Magnesium	< 0.08	> 0.10	
Manganese		> 20	
Zinc		> 10	
Copper		> 4	
Boron	< 14	19 - 150	> 185
Sodium			> 0.20
Chlorine			> 0.50

Adequate nutrients

Especially nitrogen

Paul Vossen

Influences on Oil Flavor

<u>Huge</u>

1.Variety 2.Ripeness **3.Water Status 4.Processing 5.**Storage **6.**Time

<u>Very small</u>

- Organic conventional
- Soil type (Terroir)
- Fertilizers used
- Tree density
- Elevation
- Pruning
- What's growing nearby

Fruit Handling & Climate

Variety Selection

1. Lowering Cost

- Over-the-row harvest
- Trunk shaker harvest

2. <u>Production</u>

- Yield oil/ha
- Alternate bearing
- Cold hardiness
- Disease resistance

3. Marketing

- Flavor
- Stability
- Rarity

150 varieties = 90%

3 varieties = 50%

©Paul Vossen

Wonderful Traditional Flavors

Paul Vossen

Unique Flavors

Paul Vossen

Olive Pollination

- Some varieties are very self fertile (maybe)
- Most are self sterile
- Barouni and Sevillano are incompatible
- Manzanillo and Mission are incompatible
- Frantoio and Leccino are incompatible
- Some are somewhat self incompatible
- Set better with cross pollination especially with bad weather
- Pollenizer within 200 feet

SPACING

19 ft.

Olive Tree SPACING – 20 ft.

Vigorous Varieties 14' apart

Trees too close = shading

Improper spacing

- Heavy shading
- Hard pruning
- Excess vigor
- Poor cropping

Excess Vigor

Good Nursery Tree

Planting: Afterwards

- Stake loosely, if needed
- Unstaked trees will grow stronger trunks
- Keep weeds 3' away from young trees
- Soak then irrigate as needed
- Fertilize in moderation
- Minimal pruning
- Of all possible inputs, olive trees need adequate water and weed control

Olive Pruning Basics

- <u>Energy is in the leaves</u>
 Prune as little as possible
- Light penetrates 3 ft.

NO PRUNING FIRST 5 YEARS

- Don't train until tree is 7 ft, wide
- Keep the top pruned out = lower light
- Natural form is a bush
 - Laterals as strong as a central leader
 - Large central leader has disadvantages
- <u>Single trunk for shaker harvest</u>

Remove watersprouts below 3 ft.

Worst Case

Short trunk

Scaffold selection too early

Removed 50% of the tree

1st year

Pruned and Un-pruned

Pruning – vase shape

Thin out center over 6 years

MD – opening tree centers 6th year

Thin out center

Cut to an outside branch

Narrow Tree Training (palmette)

8 x 16 ft. spacing Year 3 = 0.5 tons/acre Year 4 = 3.0 tons/acre Year 5 = 4.0 tons/acre Year 6 = 5.0 tons/acre

Palmette System – side view

Keep removing suckers & watersprouts

Don't follow bad examples

Central Leader Monocone not a natural shape for olive

OLIVES DON'T LIKE WEEDS

11 year old trees with no Weed Control

Weed Control Comparisons

Weed Management

Young Trees

Mature Trees

Disease Management

 Peacock Spot & Mycocentrospora (Cercospora) Olive Knot Root Rot Verticillium Wilt • Botrospheria Neofabrea • Xyllela fastidiosa (Olive Scorch)

Cercospora – front & backside

healthy leaf

Nifty 50

Cercospora & Peacock Spot Control

- Copper sprays- fall before winter rains start 95% control vs. 50%
- Timing more important than repeated sprays
- Consistent program important disease builds over time and then is difficult to control

Insect Management

Olive Fly (OLF)
Black Scale
Weevils

Other Miscellaneous Pests
 Gophers & Deer

On-line Publication

http://cesonoma.ucanr.edu/files/203835.pdf

FARM ADVISORS

Monitoring and Control of Olive Fruit Fly (OLF) for Oil Production in California

Paul Vossen, University of California Cooperative Extension, 133 Aviation Blvd. #109; Santa Rosa, CA 95405 pmvossen@ucanr.edu

Introduction:

live fruit fly (OLF) Bactrocera oleae was found for the first time in urban Los Angeles, California in 1998 and rapidly spread to the rest of California by 2002. The standard treatment over the last fifteen years has primarily relied on experimenting with their own mixes of various baits and generic spinosad. Consequently, when the perfect weather conditions led to higher than normal insect numbers, they got blindsided.

Olive Fly Biology:

Olive Fly Research

Life Cycle Stages

OLF Life Cycle Specifics

Life Stage	SUMMER	WINTER
Eggs	2-4 days	12-19 days
Larva	10 days	15 days
Pupa	10-12 days	47-49 days
Total	22-26 days	74-83 days
Pre-oviposition	10 days	60 days
Generation Time	32-36 days	134-143 days
Adult Life Span	50-80 days	168-175 days

Temperature Thresholds for Development

Life Stage	LOWER THRESHOLD	UPPER THRESHOLD
Egg	42.8°F	93.2 to 95°F
Larva	46.4ºF	86°F
Pupa	44.6 to 50°F	96°F
Adult	32ºF	104°F

Active 60-90°F Ideal 73°F Likes some moisture Female lays 200-500 eggs

Monitoring for Stings

4 weeks later

6 weeks later

Lowering Olive Fly Control Costs for Oil

- Use low cost mass trapping in combination with fewer sprays of GF-120 then kaolin clay
- Don't start spraying until fruit gets pea size
- Monitor damage (stings) not traps
- GF-120: Once per week (4:1) 1 oz/tree
- Spray once (autumn) with kaolin clay before when most damage occurs
- Harvest earlier
- Tolerate some damage as long as it is not rot

When to Harvest?

FRUIT MATURITY

Degree of Ripeness

Hard Green Soft Yellowing Black Skin - Flesh Green to White Black Skin and Flesh

Large influence on attributes

Early Harvest

- Can be Rough, if too early
- Astringent
- Strongly Bitter
- Strongly Pungent
- Ligneous
- Strong Green Tea
- High Polyphenols
- Less oil and lower extraction %

Intermediate Harvest

- Balanced
- Sweet & Astringent
- Bitter
- Pungent
- Ripe & Green
- Floral
- Medium Polyphenols
- High oil content
- Easy to extract

Late Harvest

- Can be Bland
- Sweet
- Non Bitter
- Non Pungent
- Ripe Fruity
- Tropical
- Low Polyphenols
- More oil more difficult to extract

©Paul Vossen

Maturity Index

Harvest Efficiently – not by hand

- Use nets under the trees
- Shake with trunk shaker or mini shaker
- Knock olives off simultaneously with poles
- Rake off with electric rakes

Paul Vossen

Hand Harvest

Spreading nets under the trees

Electric Rake – Assisted Harvest

COMPARISON OF HAND HARVEST METHODS IN ONE ORCHARD ON THE LECCINO VARIETY ON THE SAME DAY WITH THE

SAME LABORERS – YIELD 3.5 TONS/ACRE

Tree canopy's were 11-12 ft. (3.4-3.7 m) high and 7-8 ft (2-2.5 m) in diameter	Hand Pick Buckets	Hand Pick Onto Nets	Pneumatic Combs	Mini Shaker + Poles	Poles Alone
No. limbs broken/tree	4.16	3.75	18.7	22.3	28.0
No. fruit damaged/lb.	0.1	4.0	4.2	3.5	5.3
Minutes/tree/man	20:15	16:30	11:20	7:45	7:10
Pounds of fruit/man/hr.	39.8	47.8	71.6	103.5	111.4
Efficiency compared to hand pick into buckets	1.0 a	1.2 a	1.8 b	2.6 c	2.8 c

Paul Vossen

Harvest – trunk shaker & poles

COMPARISON OF HAND HARVEST METHODS IN SIX DIFFERENT ORCHARDS 2003 and 2004 (POUNDS OF FRUIT PER PERSON PER HOUR)

Orchards	Hand Pick Buckets	Hand Pick (Nets)	Pneumatic Combs (Nets)	Mini Shaker + Poles (Nets)	Poles	Trunk Shaker (nets)	Wrap-round Shaker
Very large Mission trees 70/acre (light crop)	-	-	-	-	62.5	-	-
Large Frantoio trees 155/acre (medium crop)	25.0	28.8	-	150.5	-	-	-
Medium Tuscan trees 155/acre (heavy crop)	-	28.9	-	326.5	182.1	-	-
Small-med Tuscan trees 272/acre (medium crop)	22.2	-	-	115.1	-	-	-
Italian trial trees (medium crop)	-	-	68.9	170.2	-	272.0	617.4

Producing Extra Virgin Olive Oil Simple as 1-2-3-4-5

- 1. <u>Good Fruit</u> no rot not frozen
- 2. <u>Handled carefully</u> no damage short storage
- 3. <u>Processed quickly</u> in modern clean equipment
- 4. <u>Stored well</u> clean stainless steel purged
- 5. <u>Sold</u> within a year or less

Fruit Should be Perfect

Cut/Break the cell walls and membrane surrounding the oil

Transversal view of an olive

Aggressiveness of the crusher and fineness of the paste influences flavor

Source: Leandro Ravetti, Modern Olives, 2009

- Hammermill
- Disc Crusher
 - Fruit Pitter
 - Stone Mill

Knife Blade Crusher

MALAXATION (MIXING)

- Paste is slowly mixed forms larger droplets
- 35 minutes to 1.5 hours
- Temperature < 80 86°F = "cold"
- Reverses Homogenization

Paste with free oil

DECANTERS

- Horizontal centrifuge (decanter)
- Spins at 3,000 rpm, force decants oil
- Separates oil from the solids and fruit-water

Vossen, Masters Oil Processing Course

DECANTER – Horizontal Centrifuge

Oil and Fruit-water and Solids

OIL CLEANING

VERTICAL CENTRIFUGE

- Spins at 6,000 rpm = 4 X Separation
- Cleans oil of water and solids
- Cleans wastewater of oil
- Warm water added to increase interface

Vertical Centrifuge

Purging (oil floats to the top – water and solids sink to the bottom)

Filtration

To maintain oil quality – oils are filtered using either **paper**, or **diatomaceous earth**

Water or solids in the oil allows for continued enzymatic breakdown of the polyphenols.

Filtered Oils Keep Better

Oil Storage Area

torage Conditions. Time Light Temperature **Tank Material Tank Shape Tank Atmosphere Pipeline Material**

USA Olive Oil <u>Primary</u> Users

ANT HILLOR CERTIFIED HO

- Well educated (post graduate)
- White Upper middle class
- Say their family diet is healthy
- Buy for health mostly
- Purchase at gourmet store

- Pay attention to type and color and origin
- Say they know where oil comes from

Obtained Exclusively From Olives Harvested in Italy Product Certification N° 9902a

USA Olive Oil Secondary Users

- Some education (high school graduate)
- Income below \$50K
- Say family diet is average
- Use vegetable oil most often
- Use olive oil monthly
- Say olive oil is too expensive
- Buy mostly from supermarkets
- Don't know much about olive oil

Choosing is Confusing

- Not sure what is important
- Only recognized USDA certification

USA Olive Oil Myths

- Color is related to quality
- Like wine olive oil improves with age
- Light tasting olive oil has fewer calories
- Extra Virgin grade is for cold or raw use only

USA Olive Oil Market

- Consumption will increase
- Myths should be debunked
- Encourage health, flavor, substitution, and cooking with olive oil
- Education about freshness and keeping quality

This begs for a great olive oil seasoning

DIFFERENCES BETWEEN SEED OILS and OLIVE OIL

 \bullet

Virgin Olive Oil

- Mechanical separation of oil from fruit-water and solids at 50°-85°F
 - Natural antioxidants (Polyphenols)
 - No solvents
 - Monounsaturated fat
 - Natural *cis* form
 - Flavor

Seed Oil

- Solvent extraction w/hexane
 - Fractionally distilled
 - Expeller pressed refined
- Acidity neutralized w/soda
- 340-500°F to remove color, odor, & solvent residue
 - Artificial antioxidants added (BHT) (BHA)
 - **Polyunsaturated fat**
 - Hydrogenated *trans* form
 - Bland –greasy

Two Secrets about Olive Oil

1. Oil Physically Separated from Fruit

- No solvent, no heat, no chemicals
- All seed oils are solvent extracted
- ? Solvent remnants in seed oils pomace oil ?

2. <u>EV has Flavor</u> – but most don't know what it is supposed to taste like or how to use it

- Should be bitter and pungent
- Positive influence on food
- Contrasts & stimulates
- Compliments and enhances
- Traditional ethnic flavors

Distinguished by Flavor

Basics

- Freshness
- No Defects
- Fruitiness
- Bitterness
- Pungency
- Delicate Medium Robust STYLE

Specific Character

- Balance
- Complexity
- Green Ripe
- Grassy, Herbal, Nettle, Artichoke, Green Tea, Mint, Nutty, Floral, Buttery, Tropical, etc.

Olive Oil Goes with Food

Healthy and Savory

Choking down vegetables is a lot easier with olive oil

Ham with olive oil

Needs a drizzle of olive oil

Producing Olive Oil in CA

- Olives are easy to grow
- They have few pest problems
- Use less water than most other crops
- Beautiful tree
- Healthy product
- Great flavor
- Huge USA market
- Market is saturated with cheap oil
- Make money by selling a specialty product direct to the consumer - or big volume/low cost