

Integrating Vacuumed Manure into Nutrient Management: Analysis, Considerations, and Seasonal Changes

Anthony Fulford, Nick Clark, Joy Hollingsworth, Deanne Meyer

Golden State Dairy Management Conference

March 23rd, 2022

University of California Agriculture and Natural Resources

Dairy Manure Management

- How manure is collected, stored, treated, transported and used
- Non-flush dairies need to manage dry/slurry waste streams
- Scrape systems or vacuum scraper
 - Allows nutrient export and reduces lagoon loading
- Composting or solar drying of collected manure
 - Manure solids applied to crops or exported

Manure as a Fertilizer Source

 Challenges to using manure as a fertilizer source – handling, storage and application method

Handling/Storage or Application Method (solids)	Nitrogen Loss, %
Daily Scrape & Haul	13 – 35
Manure Pack	20 - 40
Open Lot	40 - 60
Broadcast w/out Incorporation	15 - 30
Broadcast w/ Incorporation	1-5

Source: Sutton et al., 1983

Manure as a Fertilizer Source

 Challenge to using manure as a fertilizer source – not all N present is immediately available to the crop

Manure Type	Year 1, Nmin %	Year 2, Nmin %
Dairy Lagoon Water	40 - 50	15
Dairy Lagoon Sludge/Slurry; Corral	20 - 30	15
Dairy Mechanical Screen Solids	10 - 20	5

Source: Pettygrove, Heinrich, and Crohn, 2009

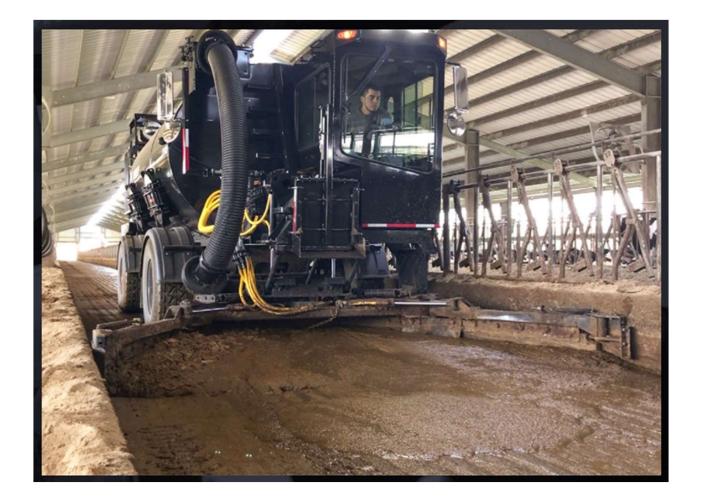
 Year 2 N mineralization can result in a manure "credit" to be used in future N budget

California Dairy Research Foundation Project

- Goal is to better characterize physical and chemical composition of vacuumed dairy manure
- Vacuumed manure sampled from four dairies
 - Sampled once in the summer (warm season) and once in the winter (cold season)
 - 4 to 14 samples collected in one day
 - Characterize physical and chemical composition
 - Determine fertilizer nutrient value

Manure Deposition and Vacuum Collection

- Manure deposited on concrete lanes during feeding
- High moisture content and collected as a slurry
- Vacuum collects manure along with sand and soil on concrete lanes

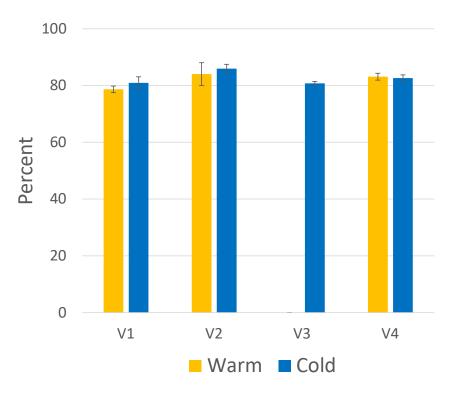

Concrete Lane – "Feed Apron"

Manure Vacuum Scraper

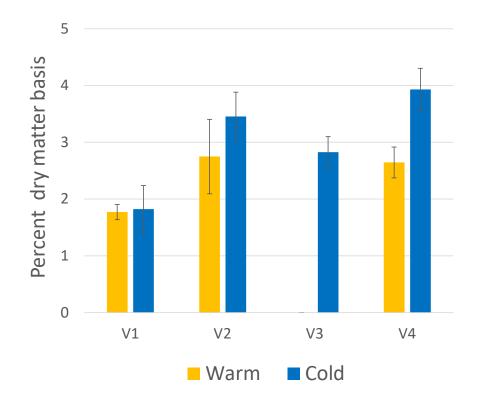
- Vacuum tank capacity
 - 2,000 to 4,000 gallons
- Weight
 - 22,000 to 25,000 lbs (empty)
 - 41,500 to 65,000 lbs (loaded)
- Adjustable front-end scraper
 - Controllable down pressure
 - 8.5 to 14 ft. wingspan

Manure Collection

Composting


Dry and Scrape

Application of Vacuumed Manure Solids


Vacuumed Manure – Moisture

- Slurry with high moisture content!
- 79% (Warm) to 86% (Cold)
- For composting want between 40 to 60% moisture
- Drying required before composting

Vacuumed Manure – Total Nitrogen

- Greater nitrogen in winter compared to summer
- 1.8% (Warm) to 3.9% (Cold)
- Sample-to-sample variability was similar between seasons

Vacuumed Manure - Fertilizer Value & Carbon

Dairy/Manure	Season	N (lbs/ton dry)	P ₂ O ₅ (lbs/ton dry)	K ₂ O (lbs/ton dry)	Carbon (lbs/ton dry)
V1	Warm	35	23	29	506
	Cold	36	25	29	481
V2	Warm	55	24	43	688
	Cold	69	34	64	740
V3	Warm	-	-	-	-
	Cold	57	22	72	840
V4	Warm	53	29	59	668
	Cold	79	31	68	756
Corral Solids*	-	42	28	47	-

*Data: Miller et al., 2019. Waste Mgmt.

Vacuumed Manure - Fertilizer Value

40 T/ac corn silage takes up 132 lbs P_2O_5 , 304 lbs N, 304 lbs K_2O

- N-based manure application
 - 7 tons/acre
 - 210 lbs P_2O_5 , 304 lbs N, and 464 lbs K_2O
- P-based manure application
 - 4 tons/acre
 - 132 lbs P_2O_5 , 191 lbs N, and 292 lbs K_2O
- N-based application, too much P and K
- P-based application, too little N and K

Dairy Manure	N:P	N:K	C:N
Vacuumed Slurry	2.0	1.1	12.5
Corral Solids*	1.5	1.6	-

*Data: Miller et al., 2019. Waste Mgmt.

Summary

- Vacuumed manure had a high moisture content regardless of season
 - Drying needed before composting
- Total N was consistently greater in winter compared to summer
- N-based or P-based application would lead to losses (excess or deficiency)
- Drying or composting would lower nutrient content compared to slurry

Acknowledgements

- Central Valley Dairy Operators/Collaborators
- California Dairy Research Foundation
- Jennifer Heguy, Madeline Morataya, Chaitanya Muraka, Joyce Pexton, Benjamin Halleck

University of California Agriculture and Natural Resources UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources