UCCE Organic Agriculture Workshop

SUSTAINING THE CYCLES

Organic Recycling Mulch Soil Amendments

Healthy Soils Support Healthy Plants

Characteristics of "Healthy Soils"

- Granular Structure
- Organic matter suitable for plant palette
- Nutrient and water reservoirs are sufficient to meet plant needs
- Friable, good tilth

"Unhealthy Soils"

- Compacted, poor structure
- Heavy salt load
- Insufficient organic matter present for good plant growth, increased water holding capacity and to support soil life
- Plants subject to increased pathogen and pest pressure

SOIL LAYERS

Challenges of Arid and Desert Soils

- High Salts
- Low Organic Matter
- Variable pH
- Sporadic Rainfall
- Salty Water
- Human Activity

Chemical Characteristics

- pH
- Salinity
- Nutrients

Soil & Water Chemistry

Total Salts in the Soil/Water Solution Beneficial

- Potassium, Calcium, Magnesium
- Sulfates, Nitrates
- Damaging
 - Sodium
 - Chloride
 - Boron in excess

Soil pH

Hydrogen lons in the Soil Solution

Physical Characteristics

• Texture

- Percent of Sand, Silt and Clay
- Percent of Organic Matter

• Structure

Arrangement of Particles

- Compaction
- Drainage

Soil Texture

Soil Structure

Single Grain Rapid Infiltration

Blocky Moderate-Slow infiltration

Platy Slow-Very Slow Infiltration

Granular Rapid-Moderate Infiltration

Prismatic Moderate-Slow Infiltration

Massive Very Slow Infiltration

Importance of Soil Structure

Micro-Aggregates

- clay microstructures, silt-size microaggregates, particulate organic matter, plant and fungus debris, and mycorrhizal fungus hypha
- Relatively stable
- Building blocks for macro-aggregates

Importance of Soil Structure

Macro-Aggregates

- Bound by fungi hyphae, root fibers, and polysaccharides
- Reduce bulk density of the soil
- Are less stable than micro-aggregates, easily subject to compaction

Importance of Soil Structure

- Macro-aggregates provide macro-pores
 - Drainage
 - Ability to leach
 - Air space
 - Reduces water molds and root rot

Biological Disease Control

- Antagonistic
- Competitive

Improving Soils with Organics

- Compost
- Mulch
- Compost Tea

Organic Mulch Reduces Soil Compaction

- Using mulch helps reduce compaction. It acts like a sponge to absorb weight and water
- Shatters rain drops
- Supplies food for microbes, which encourages micro and macro aggregation

Soil Sampling

Your Soil Analysis results are only as good as your sampling technique.

- Sample after finish grading
- Each sample should consist of 12 to 20 cores
- Make sure the lab knows that you are planting drought/salt tolerant plants

Healthy Soils Support Healthy Communities

Thanks!

