

Department of LAND, AIR AND WATER RESOURCES University of California, Davis

Climate Change • Sustainable Agriculture Environmental Quality • Landscape Processes

Nitrogen Budgeting for Corn Grown in the Delta

Daniel Geisseler

Nutrient Management Specialist, UC Davis

SJC and Delta Field Crops Meeting January 24, 2025

Field trials

- Established zero N fertilizer plots in commercial fields
- Collected pre-plant soil samples to 4 ft., analyzed for ammonium and nitrate
- Measured nitrate in irrigation water
- Collected post-harvest soil samples to 4 ft., analyzed for ammonium and nitrate
- At harvest, analyzed plant samples for total biomass, dry matter and total N
- Collected plant samples during the growing season and at harvest from fertilized plots

Field trials

- Established zero N fertilizer plots in commercial fields
- Collected pre-plant soil samples to 4 ft., analyzed for ammonium and nitrate
- Measured nitrate in irrigation water
- Collected post-harvest soil samples to 4 ft., analyzed for ammonium and nitrate
- At harvest, analyzed plant samples for total biomass, dry matter and total N
- Collected plant samples during the growing season and at harvest from fertilized plots

Nitrogen uptake of grain corn

N in Biomass (lb/ac) = grain yield (t/ac) \times 17 + 110

Nitrogen uptake of silage corn

N in Biomass (lb/ac) = silage yield (t/ac) \times 11.3 - 90

200-250 lb N/ac in the corn biomass Where does it come from?

- Residual soil nitrate-N in spring
- N mineralization from soil organic matter during the growing season
- Irrigation water N
- Atmospheric deposition
- Fertilizer N

200-250 lb N/ac in the corn biomass Where does it come from?

- Residual soil nitrate-N in spring
- N mineralization from soil organic matter during the growing season
- Irrigation water N
- Atmospheric deposition
- Fertilizer N

Can we predict residual soil nitrate?

Residual nitrate-N ranged from 20 to 120 lb N/acre in the top foot

Bulk density in the top foot

How to convert ppm nitrate-N to lb N/ac in top foot?

Multiply ppm by:

- 3.5-4.0 for low organic matter Central Valley soils
- 1.5-2.5 for high organic matter Delta soils

200-250 lb N/ac in the corn biomass Where does it come from?

- Residual soil nitrate-N in spring
- N mineralization from soil organic matter during the growing season
- Irrigation water N
- Atmospheric deposition
- Fertilizer N

What is N mineralization?

- Soil microorganisms decompose organic matter
- They need N and C as building blocks for their own biomass
- C is also used as energy source
- N mineralization: Release excess N in the form of NH₄⁺ into soil solution
- N immobilization: Uptake of NO₃⁻ or NH₄⁺ from soil solution and incorporation into microbial tissue

Calculating net N mineralization

Net N mineralization = N outputs – N inputs

Outputs:

- N in biomass at harvest (aboveground N measured; root N estimated)
- Post-harvest residual nitrate in soil profile (4 ft)
- Leaching and gaseous losses (assumed to be zero)

Inputs:

- Pre-plant residual nitrate in soil profile (4 ft)
- N fertilizer (was zero at all sites)
- N in irrigation water
- Atmospheric N deposition

N mineralization during growing season (top 2 ft.)

Central Valley soils:

- Average: 95 lb/ac
- Range: 35 190 lb/ac
- Weakly correlated with clay content

Delta soils:

- Average: 210 lb/ac
- Range: 50 435 lb/ac
- Correlated with soil organic matter content

N mineralization vs. soil organic matter

Yield: Fertilized vs. unfertilized

Yield: Fertilized vs. unfertilized

N uptake vs. available N

N uptake vs. available N

Putting it all together

Crop Nitrogen Calculator for California

This calculator was developed based on results from several studies in commercial fields in California. Information on lines marked with an * needs to be provided.

Field-Specific Input

Crop*:	Corn - Grain 🗸
Region*:	Sacramento Valley - Yolo 🗸 🗸
Planting date*:	mm / dd / yyyy 📛
Expected harvest date*:	mm / dd / yyyy 📛
Expected yield*:	tons/ac 🗸
Residual nitrate in 1 st foot:	ppm Nitrate-N 🗸
Residual nitrate in 2 nd foot:	ppm Nitrate-N 🗸
Nitrate in irrigation water:	ppm Nitrate-N 🗸
Irrigation System*:	Furrow ~
Liquid starter fertilizer:	Ib N/ac 🗸 🗸
Soil organic matter*:	%
Soil type*:	Organic (e.g. Delta, Tulelake) 🔹 🗸
	Sandy (gritty)
Display Resu	Loamy (neither sticky nor gritty)
	Clayey (sticky when wet)
	Organic (e.g. Delta, Tulelake)

Adjusting N fertilization to crop fertilizer needs

- Analyze soil sample for nitrate-N before fertilizer applications
- Split applications
- We are currently working on a site-specific online calculator
- Monitor field during growing season taking leaf or soil samples
- Establish strips within a field with reduced N fertilizer applications to determine the crop response to N fertilizer

Conclusions

- N in the aboveground biomass at harvest averaged 200 – 250 lb/ac
- Residual nitrate in spring is variable and hard to predict ⇒ needs to be measured
- Bulk density of Delta soils is low ⇒ affects conversion from ppm N to lb N/ac
- N mineralization is related to soil properties
- Residual nitrate-N and N mineralization (available N) exceeded N uptake in some fields
- When available N was high, yield response to fertilizer was low

Acknowledgement

- Funding provided by CDFA-FREP
- Michelle Leinfelder-Miles
- Growers
- Suzette Turner, Makena Savidge