Strategies to Optimize Irrigation Management in Strawberry Production

Michael Cahn Irrigation and Water Resources Advisor UC Cooperative Extension, Monterey County mdcahn@ucanr.edu

University of **California** Agriculture and Natural Resources

Regulations on N management have become stricter

Table C.1-3. Compliance Dates for Nitrogen Discharge Targets and Limits

	Compliance Date			
	Target	500	12/31/2023	
	Target	400	12/31/2025	
Compliance Pathway 1	Limit	300	12/31/2027	
$A_{FER} + (C \times A_{COMP}) + (O \times A_{ORG}) + A_{IRR} - R =$	Limit	200	12/31/2031	
	Limit	150	12/31/2036	
	Limit	100	12/31/2041	
	Limit	50	12/31/2051	

Account for all sources of nitrogen

- Residual mineral N in soil (Nitrate and ammonium)
- N in irrigation water
- Nitrogen mineralization from soil, amendments, and previous crop residues

Water management will be critical as N fertilizer rates are reduced

Benefits of a High Irrigation Efficiency

- Minimize nutrient losses
- Fertigate uniformly
- Conserve water
- Improved salinity management
- Better yield and quality
- Save money

3 Sides to Achieving High Irrigation Efficiency

Application uniformity of strawberry drip systems (2012-2016)

Design problems identified in Strawberry

- Excessive pressure loss across hose leads
- Hose leads are different lengths
- Excessive pressure loss along submains
- Slope caused excessive pressure variation
- Diameter of submain was too small for flow rate
- Mix of tape with different flow rates within block
- Block area too large for system flow rate
- Low area of field excessively wet

Pressure is the key to drip irrigation

✓ Right pressure✓ Consistent pressure

Discharge rate of drip tape varies with pressure

Monitoring pressure is more complicated than it seems

- Mechanical pressure gauges on an irrigation system are often inaccurate, in the wrong location, or broken.
- New mechanical pressure gauges may be inaccurate by as much as 1 to 2 psi (10% to 20% error for tape at 10 psi).

Use Schrader valves and calibrated pressure gauges

Factors that increase pressure variation

ELEVATION CHANGE UNDERSIZED FITTINGS AND PIPE

PRESSURE LOSS IN DRIP LATERALS

2.3 feet of elevation change = 1 psi

Designing a submain along a slope

- 6 % slope

Undersized connections between the main and submain can cause excessive pressure loss

Pressure Loss in Mains and Submains (psi loss per 100 ft)

Pipe					a	1 /	17 • • •				
Diameter					TIOW I	rate (ga	ı/min) -				
(inches)	25	50	75	100	125	150	175	200	300	400	500
1.5	3	13	27								
2.0	1	3	7	11	17	24					
2.5	0	1	2	4	6	8	11	14	29		
3.0	0	0	1	2	2	3	4	6	12	20	31
3.5	0	0	0	1	1	2	2	3	6	10	14
4.0	0	0	0	0	1	1	1	1	3	5	8
5.0	0	0	0	0	0	0	0	0	1	2	3
6.0	0	0	0	0	0	0	0	0	0	1	1

Connections between submain and drip tape

1 to 3 psi loss across the polyethylene leads (spaghetti) is typical

- Large diameter lead minimizes pressure losses
- All leads should have a similar length
- One lead per drip line

Many irrigators regulate pressure of drip systems using a valve

If pressure varies then the flow rate of the drip system will vary

Use pressure reducing valves to automate pressure regulation

- ✓ Install at main-submain connections
- ✓ Size for flow rate and pressure range
- Need sufficient upstream pressure (5 psi > downstream psi)
- ✓ Maintenance and training needed

What is the best approach for irrigation scheduling of berries?

Soil moisture: when?

Weather-based: how much?

Tensiometers measure the energy that plants require to pull water from the soil pores (tension)

Measurement of soil moisture that is most related to water status in a plant

Weather-based irrigation scheduling

Converting Reference ET to Crop ET:

$$ET_{crop} = ET_{ref} \times K_{crop}$$

K_c can vary from 0.1 to 1.2

CropManage: Online irrigation and nitrogen management decision support

🕁 stra	wberry 3	×				
17 Nov 2022 - 25 Nov 2023		Ф 🖩 🗘 ш				
Tasks	History	Ē				
COMPLETED						
APR 6	🗮 Drip	1.1 hr				
APR 4	🗮 Drip	0.9 hr				
MAR 30	실 Drip	1 hr				
MAR 29	CAN-17	2 gal/acre				
MAR 29	🏷 Quick Nitrate Strip	11.8 ppm				
FEB 17	🗮 Drip	1 hr				
FEB 9	🗮 Drip	0.9 hr				
FEB 2	🗱 Drip	0.7 hr				
JAN 30	🗱 Drip	0.9 hr				
JAN 27	🗱 Drip	0.8 hr				
	View all ev	rents by: 🔳 🖩 🗎				

cropmanage.ucanr.edu

Irrigation Effects on Marketable Fruit Yields

Difficult to identify water stress early

50% Crop ET

150% Crop ET

Summary

Growers will need to become more efficient in water and nitrogen management in the upcoming years

Irrigation management is key to optimizing water use and nitrogen fertilizer.

•Achieving a high irrigation efficiency requires a good design, good maintenance and operation, and accurate scheduling of irrigations