A Survey of Botrytis fruit rot in Santa Maria strawberry fields with and without fungicides

Yu-Chen Wang

Plant pathology advisor UC Cooperative Extension Serving Santa Cruz, Monterey, San Benito counties

> **UNIVERSITY OF CALIFORNIA** Agriculture and Natural Resources

CAL POLY Strawberry Center

Optimal temperature (62°F -77°F) and prolonged free moisture (>13 hr, from rain, fog, dew, irrigation) are critical for disease development.

Environment

Frequent fungicide application for BFR

- Fungicide use pattern for BFR
 - 15 applications/season
 - 11.7 days of application interval
- Risk
 - Cost (\$80-\$100/acre)
 - Fungicide residues in fruit
 - Fungicide resistance

Low rainfall in the production season

- Critical environment conditions for BFR:
 - Optimal temperature (62 -77°F; 16-25°C)
 - Prolonged free moisture (>13 hr)

2020: Low levels of BFR were found in all three districts

What happens if we don't spray for BFR?

- A survey in grower's fields to compare BFR incidence in
 - Fungicide treatment (Grower's practice)
 - No-fungicide treatment

Fungicide and no-fungicide treatments

• 7 contiguous beds (about 0.2 acre) no-fungicide spraying

In-field BFR assessment

• Weekly in-field assessment:

sampling size: 50 fruit x 4 measurements = 200 fruit

• BFR incidence (%): Number of BFR fruit *100%

Postharvest BFR assessment

• Weekly postharvest assessment:

7 days storage at 36 $^\circ\text{F}$ (4 $^\circ\text{C})$

BFR assessment

Marketable fruit (2 boxes) was picked and transported to Cal Poly.

• BFR incidence (%): Number of BFR fruit *100%

Experimental sites in Santa Maria area

Field 1 In-field BFR incidence (2021)

Processing fruit production

Field 1 Postharvest BFR incidence (2021)

Field 31 In-field BFR incidence (2021)

Field 31 Postharvest BFR incidence (2021)

2021: No significant differences between fungicide and no fungicide treatments in BFR incidence

2022: No fungicide treatment showed high BFR postharvest incidence; No significant differences in in-field BFR incidence

 A regression model to the squareroot transformed proportion of diseased fruit; Post-hoc test using Student's t-test at P<0.05

Conclusions

- Low BFR incidence was found between fungicide and no-fungicide
- A potential of reducing fungicide use without compromising BFR control

Decision support tools to time fungicide application

- The Strawberry Advisory System (StAS)
- StAS validation- reduce fungicide use without compromising the yield

Location	Fungicide use	Reference
Florida and South Carolina	↓50%	(Cordova et al. 2017)
Mid-Atlantic	↓50%	(Swett et al. 2020)
Mid-Atlantic	↓18-55%	(Hu et al. 2021)

Acknowledgements

- Strawberry growers
 - Bryan Gresser
 - Greg France

- Miriam Mendez, James Reid, Adilenne Ramirez, Jason Sharrett, Andrew Molinar
- Cal Poly Strawberry Center
 - Vivian Longacre, Joseph Ramirez, Luke Mayberry

Thank you! Questions?

Yu-Chen Wang

Plant pathology advisor UC Cooperative Extension Serving Santa Cruz, Monterey, San Benito counties

yckwang@ucanr.edu